

On Understanding Emergence In the Context of System Safety

Philip Koopman, Jen Black

(Based on thesis work of Jen Black – DSN 2009 paper)

IFIP WG 10.4 Meeting, Obidos Portugal July 5th, 2009

Motivation

- Want to decompose safety critical functions to subsystems
 - Increases chance of system integration success
 - Permits testing for safety before system integration
 - Example: vehicle has subsystems from many suppliers
- But, safety is emergent
 - Loosely: examination of individual components doesn't completely predict safety
- Research topic (Jen Black DSN 2009 paper & thesis):
 - Decomposition of emergent properties is undecidable
 - Can we do something useful in the non-worst-case?

How do We Decompose Safety?

- $G_1^{A1} \wedge G_1^{B1} \wedge G_1^{B2} \wedge G_1^{B3} \wedge ... G_1^{\alpha 1} \wedge G_1^{\alpha 2} \Leftrightarrow G$
 - Can this be done? Where does emergence fit in?
 - Is partial decomposition possible? Is it useful?

Definitions: Fully Composable, Emergent

• G is **fully composable** if:

$$\exists \{G_1,G_2,...G_n\}$$
 such that:

$$G_1 \wedge G_2 \dots \wedge G_n \Leftrightarrow G$$

which can also be expressed as:

$$(G_1 \land G_2 ... \land G_n \Rightarrow G)$$

 $\land (\neg G_1 \lor \neg G_2 ... \lor \neg G_n \Rightarrow \neg G)$

Subgoals: (ObjectInPath
$$\Leftrightarrow$$
 CA.StopVehicle) \land (CA.StopVehicle \Rightarrow StopVehicle)

brake subsystem

 G_1

• G is **Emergent** if no such set of subgoals exists

 G_2

 G_3

Emergent but Partially Composable

• G is partially composable if:

$$\exists \{G_1,G_2,...G_m\}$$
, X (emergence) such that:

$$G_1 \wedge G_2 \dots \wedge G_m \wedge X \Leftrightarrow G$$

which can also be expressed as:

$$(G_1 \land G_2 ... \land G_m \land X \Rightarrow G)$$

$$\land (\neg G_1 \lor \neg G_2 ... \lor \neg G_m \lor \neg X \Rightarrow \neg G)$$

The Key Idea

Functional correctness is about doing the <u>right</u> thing:

$$(G_1 \wedge G_2 ... \wedge G_n \wedge X \Rightarrow G)$$

- Over-approximating any G_i is OK
- If you are missing any sub-goal X, you don't achieve G
- BUT, safety is often about <u>not</u> doing the <u>wrong</u> thing:

$$(\neg G_1 \lor \neg G_2 ... \lor \neg G_n \land \neg X \Rightarrow \neg G)$$

- Identifying <u>any</u> of the subgoals can be useful
- Under-approximating ¬ G still increases safety, even without X
- Results: Identifying only some subgoals seems helpful
 - Monitoring sub-goals at run-time; process of finding subgoals too
 - Found 11 safety-critical design defects on research vehicle model