Session 5 Evidence and Assessment II

From Fault Injection-based Assessment to Dependability Benchmarking: A 4-Way Street or a Long and Winding Road?, Jean Arlat, LAAS-CNRS.

Developing and evaluating critical software for space systems, Lothar Winzer, ESA/ESTEC

Jean Arlat

- Fault Injection two main uses
 - Assessment of a single system (coverage, recovery time, etc.
 - Benchmarking (comparison of systems, mechanisms, etc)
- Historic overview many techniques
 - Hardware based, software based, radiation,
 - Simulation at different abstraction levels
- FI serves as a complement to modelling, field failure data collection, etc.
- Farm Faults, Activations, Readouts > Measures
- Partial assessment
 - No info about fault rate.
- Coverage estimation
 - Coverage factor introduced by Carter et al. in 1969

Jean Arlat (2)

- Coverage estimation
 - Impact of observation time
 - Time-dependent vs Asymptotic coverage
- Sampling the fault-activation space
 - Simple sampling vs stratified sampling
 - How to select meaningful faults? (Mirek)
- Benchmarking
 - Need for agreement on the FARM attributes and FI interface
- Future needs and issues
 - Work on faultload representativeness
 - Fault collapsing techniques
 - Security attacks and vulnerability

Lothar Winzer (1)

- Do's and Dont's in evaluation of critical software
- Examples of major failures of space missions
- Achievements Processes in place
 - Software process assessment and improvement
 - SPICE for space
 - 30 assessements over 6 or 7 years
 - Evaluation for re-use of software from previous missions
 - Suppliers sometimes think re-validation is too heavy
 - Third party assessment
 - ESA standard, used in all lifecycle phases

Lothar Winzer (2)

- Work in progress
 - Software Quality Modeling and Metrication
 - Past effort: 80 metrics: too many
 - New effort: fewer metrics
 - User involvement in metrics definitions? (John M)
 - Consideration of operability ?(Michel)
 - No(?)
 - Who gets the blame if anything goes wrong? (Roy)
 - Translate into lessons learnt
 - Use of COTS SW & OSS in Critical Functions
 - Model based Validation of RAMS Requirements
- Less successful areas
 - RAMS at Software Level
 - "Certification" of Software Products
 - Risk Management using Process Assessment Results

Lothar Winzer (3)

- Things not in the list
 - Software Reliability Modelling
 - N-version programming
- Discussion
 - What about the inadequacies? (Roy)
 - Lothar: Time and Money is the problem
 - Problem of testing at the end of the lifecycle.
 - How to validate metrics
 - Lothar: Use commercial metrics tools.

Session 4 Evidence and Assessment I

Challenges on safety Evaluation in Future rail and Air Transportation Systems, Joao Batista Camargo, USP, Brazil

Railway Safety Assessment Processes: the past, the present and possible future challenges, Federico Caruso, RINA, Italy

Joao Batista Camargo

- Comparison of standards
 - Meta standard (IEC 61508)
 Human factors

ISO26262 - Methods and measures for system integration

Methods and measures		According	ASIL			
		to req.	Α	В	С	D
1	Requirements-based tests ^a	7.4.3.2	++	++	++	++
2	Back-to-back tests ^b	7.4.3.2	0	+	+	++
3	Tests of external interfaces ^c	7.4.3.2	+	++	++	++
4	Interface consistency check ^d	7.4.3.2	+	++	++	++
5	Tests of internal interfaces ^e	7.4.3.2	+	++	++	++
6	Communication tests ^f	7.4.3.2	++	++	++	++
7	Tests of interaction/communication ^g	7.4.3.2	++	++	++	++
8	Fault injection tests ^h	7.4.3.2	+	+	++	++
9	Error guessing tests ⁱ	7.4.3.2	+	+	++	++
10	Tests derived from field experience	7.4.3.2	0	+	+	++
11	Resource usage tests ^k	7.4.3.2	0	+	+	++
12	Performance tests ^I	7.4.3.2	0	+	+	++
13	Stress tests ^m	7.4.3.2	0	+	+	++
14	Tests for interference resistance/robustness and under certain environmental conditions ⁿ	7.4.3.2	++	++	++	++

Federico Caruso

- History
 - From ropes to FPGAs
- SIL 4 always required
- ALARP
- European consensus
- Validation of Functional Requirements
- Discussion