
Section 1: modelling based evaluation

- John Meyer: "Model based evaluation of user-perceived system quality"
- Ivan Mura: "From computer science to system biology and viceversa: new modelling challenges, approaches and tools"

User-perceived quality

- Evolution of measure types (from perf. ev. to user-perceived measures)
 - In the beginning …
 - Xability measures: Dependability, performability, survivability
 - Quality of X measures: QoS, QoE, QoP
- Accounting for the use environment
 - Need a use(r) profile
 - User-observed failures, normalized MTTF (depends on active periods of users) - reliability, availability conditioned on the use profile

User satisfaction

- Objective measures: Performability, OoS often just a re-interpretation in QoS terms of a dependablity measure.
- Objective measures do not always capture the correct behaviour: need to put the user in the loop
- Subjective measures subjective quality assessment: QoE, QoP
- Model-based evaluation of QoE/QoP requires high level experiments that involve the users (similarities with video compression algorithm assessment)

DISCUSSION

- relationship to market models, and related psycological models
- subjectivity of satisfying the average

Modelling in biology

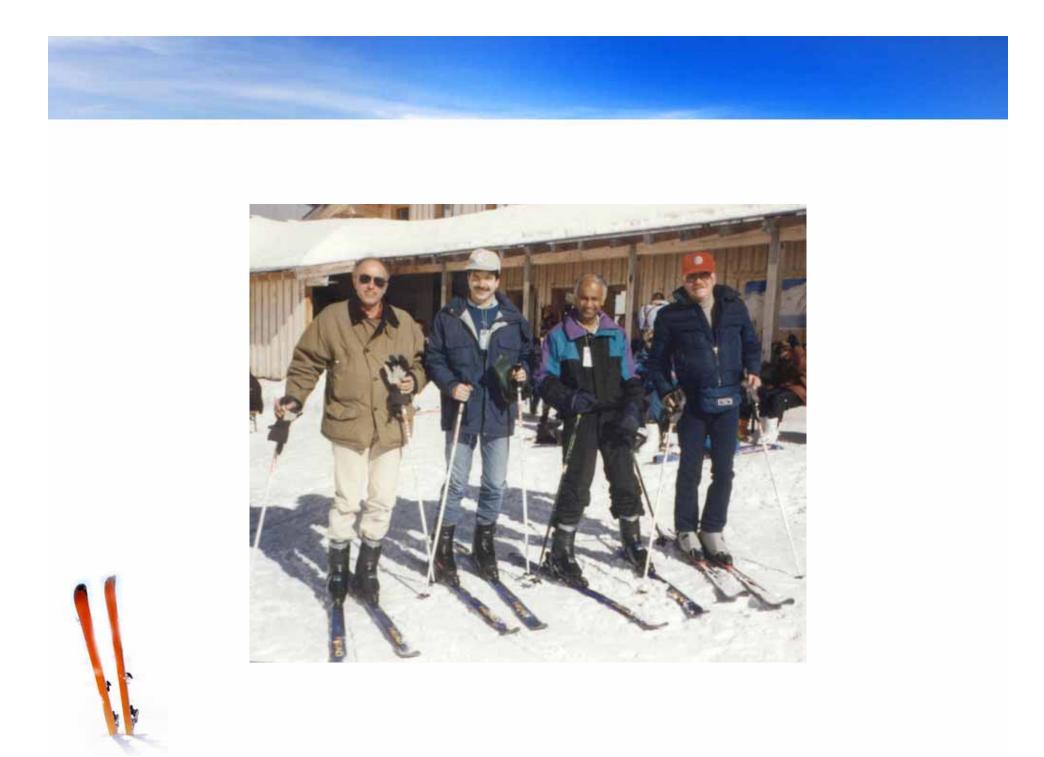
- Modelling in biology
 - System biology "...understand complex biological systems through the integration of experimental and computational research
 - Very large community
 - Validated models are used for predictive purposes (diminish the cost of wet-lab experiments)
 - Invalidated models allow to postulate new hypothesis to set up new experiments
- Solutions devised model based
 - From physics (continous) and from computer science (discrete)
 - Many tools available on both sides
 - Measures: "typical quantitative" (e.g. concentrations), resiliency to perturbations, which kinetics rate determines a certain phenomenum, etc
- Peculiarities.
 - Models of very large size (10²⁴ for a cell toy example)
 - Models have "sites of interactions" which are difficult to specify
 - Biological systems can exhibit oscillatory behaviour also in steady state conditions (measure?)
 - Partial knowledge of the system

Modelling in biology

- Relationships with computer science
 - Continous approximations set of ODE
 - Sophisticated interactions (split of interactions and their rate)
 - Abstraction as a way to manage unknowns
 - Speed-up of stochastic simulation (significant improvements of Gillespie's algorithm)

DISCUSSION

 Links between biology and dependability - mainly on common tools that can be used



Modelling in biology

FINAL DISCUSSION

- Validation issues
 - Look for relationships between variables more than on absolute values
 - Check against wet-lab experiments
 - Validate the model or the results? For dependablity is more the results, for biology is more the model itself, so as to get useful insights
 - Validated models can be re-used?
- Measures issues: measures defined are informative in understanding where the problem comes from?

