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Context
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Biological research

» The scientific community of biologists outnumbers by far all

others

° ahot research area
> big private investments (in 2006, Pharma and BioTech, 100BS)

» Most of these resources are spent in experimental work in
molecular biology studies
» Technological progress

° increasing observability
> speeding-up experiment execution

» A huge amount of experimental data is being generated
° afraction is available in various public repositories over the Internet
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Systems Biology into play

» The complexity of biological systems soon called for mathematical tools

» Computers support to mathematical biology approaches has generated

two main areas of activity
> Bioinformatics
° Computational Biology

» Recently, the aim to integrate knowledge coming from traditionally
separate areas of biology (genetics, proteomics, metabolomics) has

led to Systems Biology

» The fundamental paradigm of Systems Biology
° behavior is emerging from the dynamical interaction of components
o systems should be studied with tools able to represent this

...understand complex biological systems through the integration of
experimental and computational research [H. Kitano, 02]
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Research community size

A fast growing research area Systems Biology Institutes
B US&Canada ™ Europe © Others

Around 70 international conferences and
workshops in 2007 on related subjects

e 1100 attendants at the International Conference on
Systems Biology 2008 in Gothenburg, Sweden

[2007] source: www.nature.com

Standardization efforts
e SBML, CellML, BioPax
e SBGN
 SBO, SBRML

e 105 computational tools registered
as SBML compliant

Systems Biology Departments

¥ US&Canada ™ Europe © Others

[today] source: emb1.bcc.univie.ac.at
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Objectives
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Models in a reverse engineering loop

» Allin all, the main objective of modern biology is to solve a substantial
problem of Reverse Engineering
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BEHAVIOUR SPECIFICATION

\ falsified
EXPERIMENT @ HYPOTHESES

» Model: a formal representation, which when
> validated confirms the validity of the inferred knowledge used to build it

° invalidated allows postulating new hypotheses and driving definition of experiments
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Predictive models

» Validated models are used for predictive purposes
> refinement of available knowledge through deduction

» Many experimental scenarios hardly accessible in wet-lab experiments
may be evaluated at low cost with the in-silico approach

» Example: gene silencing
° in-silico: set one variable to FALSE
° wet-lab: DNA engineering or RNA interference

» Experiments run on a model can significantly reduce the effort required
in the lab
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Modeling approaches in SB
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Classical approaches

Biologists mostly use unstructured
graphical models for encoding
knowledge about systems

° unclear semantics

> lack of quantitative information

° generalizations totally overlooked

A more expressive reaction based

specification language has been borrowed from chemistry
c @ —-A, QD —-B
- A+B—-C, C -A+B+C
- C—-0

Models based on systems of ordinary differential equations
quantitative information expressed in the form of kinetic rate constants
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Intrinsic discreteness

» The truly molecular nature of biological interaction was considered
hardly tractable

° tracking single molecule state, location and movement is indeed quite
heavy from a computational point of view

» This was considered to be true until 1976, when D. T. Gillespie
o proved that the evolution of a well-stirred biochemical system can be
accurately modeled by a continuous time discrete space Markov process

o provided a very simple and extremely efficient simulation algorithm
for computing realizations of such process

» Gillespie’s algorithm (SSA) has paved the way for a number of
discrete modeling approaches
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Algorithmic approaches

» Algorithmic biology aims at representing causality in biological
transformations

» Fueled by Gillespie result, new modeling tools have been proposed

o discrete state-space
o stochastic reaction times

Petri Nets Process Algebra
Modeling metaphor Modeling metaphor
» tokens count the number of * processes represent biological entities
molecules of species * interactions are represented as
 transition model reactions communications on a channel
Firing rates Communications based on affinity
e Transition rates always dependent * interaction likelihood is defined
on the marking of input places through affinities of process
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Tools in SB
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An historical perspective

» Since the beginning of the Human Genome project, computational
support to biology has come through bioinformatics tools
° String manipulation
° Databases
° Data mining
o Statistical applications (clustering)

» The 90’s have seen a spread of tools for continuous modeling borrowed
from physics approach to biology
° ODEs and PDEs solvers
°  Metabolix flux analysis

» During the last decade, tools developed within the computer science
community started to be used

o Petri Nets (1998, Goss-Peccoud) and Process Calculi
° P-systems

> Model checking
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The current situation

Maobius
CellDesigner
PRISM
COPASI
SPiM
Pathway _
Analyzer BIOCHAM Dizzy
BlenX
_ PET
WinPP Bio-PEPA

Snoopy
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Measures of interest

» Typical quantitative aspects of interest on biological systems

» How resilient is a system to perturbations? If a gene is silenced, what will
change in
> the probability of entering deadly states
> the speed of metabolism
> the patterns of genes activation

» What are the likely causes of a wrong system response?
> which kinetic rate determine the observed phenotype

» How can we interfere on a system that is wrongly responding to bring it
back into operation?

> which reactions should be targeted by a drug
> which entities should be removed
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Domain-specific challenges

IFIP WG 10.4 Meeting  Cortina d’Ampezzo



Number of entities

» Biological systems have to deal with molecular noise
o predictable behaviors emerge from large numbers effect

> in the small volume of a cell nucleus there can be thousands of copies
of a molecule type

» Different scales of multiplicities within a single system
° 1 copy of a gene
> 10° molecules in one cell nucleus
> 10° synapses for one neuron
o 10 cells in the human organism

» Immediate consequences on state spaces
o 10?% states in a toy cell cycle model
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Dynamic creation of entities

» Biological compounds have sites of interaction

° multiple sites can be present in the same entity
> bindings occur reversibly between 2 affine sites

o complexes of biological components can assembly without a precise order and can result
in different topological structures

° example: protein C has 2 sites, both affine to 2 sites of protein W

How many
structures
‘ can form?

° It may be cumbersome or even impossible to specify such a behaviors in many formalisms
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Oscillatory behaviors

» Many biological systems achieves
equilibrium conditions that are
not commonly found in artificial

systems
> living systems keep oscillating

» Many systems have transient

oscillation that stop abruptly
> dead

» This poses issues in
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> defining adequate measures that can characterize cyclic system behavior

° comparing similar but different systems
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Partial system knowledge

» Known unknowns
° many biological entities are only partially characterized

° interaction among entities are not always observable and thus values of many
parameters to be used in models are unknown

»  Unknown unknowns
> not all the entities participating in an interaction network are known
° we may not know which abstractions are actually used when defining models

» Modularity is only apparent

° the number of roles and functions of entities keeps growing
° one input rarely corresponds to a single response
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Solutions devised in SB
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To handle big size populations

» Continuous approximation
> the number of entities is approximated into a proportional concentration
° variations of concentrations are modeled as changes in their first derivative

° models are sets of non-linear ordinary differential equations, solved through
numerical integration

» Many tools exist for continuous ODE modeling
° reaction-based languages are commonly used for specification
° ODEs are automatically obtained from reactions
o efficient numerical solvers handle large/stiff models

> time-dependent, equilibrium, vector fields and bifurcation analyses

» Work in progress...

> some theoretical and experimental results show interesting relationship between results
of discrete and continuous models
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To handle dynamic creation of new
entities

» Interaction-based modeling languages based on process algebra

» BlenX encapsulates m-calculus processes into boxes with interaction
capabilities

Binders<- @ @
x:Aorzh: A | l

P)

l

n-Processes (a subset of syntax)
P:=nqi|x.P|P|P|vyP|!'x.P

wu=x(y) | x(z) I hide(x ) I unhide(x) l expose(x. I')

» Evolutions of the internal process change the state of the box and of its
interaction capabilities
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A separate specification

INTERFACES
» The set of interaction capabilities of
entities are modeled by binders

» At any moment, interaction can only
happen through visible binders

» Binders are typed

COMMUNICATION RATES

The rate at which interaction happen

through binders is specified by a type
affinity table

Multiple rates can be used to specify

rate of start, failure, completion of
the interaction

affinities
u,y, 0 0 0
u,v, rp, 0 0
UyVs s ks

Ci3
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An example: Web services

» Web services use standardized XML messaging
» Allow for self-descriptive and discoverable services

WDSL WSCI
XML language to specify XML language to specify
— messages: types of data exchanged —

a refinement of WDSL ports detailing
— ports: sets of abstract operations on externally visible interfaces

defining offered services — who can participate in an interaction

WDSL and WSCI specifications can be parsed to automatically
obtain a BlenX model

Quantitative information can be added to the model to conduct
simulations
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To manage unknowns

» An ideal abstraction usage: we want to simpIify@

A rate function accounts for

the effects of Cdk/CycB on
CKI degradation rate

f(Cdk/CycB CKI)

"1

g
R

&

» The real abstraction usage: current knowledge only allows building @

» However, a good news is that we can obtain rate functions inferred from
wet-lab experiments

IFIP WG 10.4 Meeting  Cortina d’Ampezzo




To speed-up stochastic simulation

» Gillespie’s family of Stochastic Simulation Algorithms

» Fundamental hypothesis

> times of occurrence of every reaction in the system follow a negative exponential
distribution

» Let

R,R,...,R,, the reaction set

o X(t)=x the state of the system

> a,(x),a,(x),...,a,(x) the reaction rates, also called propensities
° ay(x) defined as . a;(x)
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Direct method (1976)

» Given X(t)=x, the probability that the next reaction happens in the
infinitesimal time interval [t+T,t+Tt+dt] and is a reaction of type j is

/(%) - exp(-a,(x) T)

> the time T to the next reaction is an exponential random variable of mean 1/a,(x)
> the probability that next reaction is of type j is a;(x) /a,(x)

» At each simulation step, 2 uniform r.n. u and v are drawn
° T ischosen to be In(u?)/a,(x)

J
> j is chosen as the smallest integer satisfying a;(x)>v-ap(x)
=1

]
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Reformulations of the method

A 4

First reaction method (1976)

> at each simulation step, draw m uniform r.n. and compute t,, T,,..., T,,, the putative time
of all reactions

> choose t as the min(t, ..., T,,)
> choose j as the index of the minimum above

Next reaction (2000)

° same as the above one, but the putative times are saved in an indexed binary tree so that
the minimum is always at the top

A 4

> adependency graph is used to keep track of coupling among reactions to determine when
putative times in the tree have to be resampled

Modified direct method (2004)

° apre-run to determine a suitable order of reactions to minimize cost of step 2)

Sorting direct method (2006)

> self-adaptive version of the one above, no pre-run

v

v

IFIP WG 10.4 Meeting  Cortina d’Ampezzo




To analyze oscillatory regimes

» Convert time series to frequency spectra
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Statistical measures over FA

e Spectra of multiple stochastic runs are averaged
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» Three measures
pl = lOgQ(nlax(fl..N—l)/(fl..;‘\"—l)) log(peak/mean)
p2 = 0(f1..N—1)/<f1..A"—1> coefficient of variance
‘ 1 2 ] ..
p3 = Sup|F0-_N_1 - FO..N—1| Kolmogorov — Smirnov statistic

f , = w™ complex frequency component, F = cumulative frequency distribution of f
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Summary

» Models play a key role in Systems Biology

» Some modeling challenges are shared with computer science,
some others are domain specific

» Approaches ant tools are in an explorative phase

» Some solutions independently devised may be useful/improve
over current practice in computer science
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