From Computer Science to Systems Biology and vice-versa

New modeling challenges, approaches and tools

Ivan Mura

The Microsoft Research – University of Trento Center for Computational and Systems Biology

Outline

- Context
- Modeling for systems biology
 - objectives
 - approaches
 - tools
- Challenges
- Solutions devised in systems biology
 - hooks for computer sciences
- Summary

Context

Biological research

- The scientific community of biologists outnumbers by far all others
 - a hot research area
 - big private investments (in 2006, Pharma and BioTech, 100B\$)
- Most of these resources are spent in experimental work in molecular biology studies
- Technological progress
 - increasing observability
 - speeding-up experiment execution
- A huge amount of experimental data is being generated
 - a fraction is available in various public repositories over the Internet

Systems Biology into play

- The complexity of biological systems soon called for mathematical tools
- Computers support to mathematical biology approaches has generated two main areas of activity
 - Bioinformatics
 - Computational Biology
- Recently, the aim to integrate knowledge coming from traditionally separate areas of biology (genetics, proteomics, metabolomics) has led to Systems Biology
- The fundamental paradigm of Systems Biology
 - behavior is emerging from the dynamical interaction of components
 - systems should be studied with tools able to represent this

...understand complex biological systems through the integration of experimental and computational research [H. Kitano, 02]

Research community size

A fast growing research area

Around 70 international conferences and workshops in 2007 on related subjects

 1100 attendants at the International Conference on Systems Biology 2008 in Gothenburg, Sweden

Standardization efforts

- SBML, CellML, BioPax
- SBGN
- SBO, SBRML
- 105 computational tools registered as SBML compliant

Systems Biology Institutes

Systems Biology Departments

[today] source: emb1.bcc.univie.ac.at

IFIP WG 10.4 Meeting Cortina d'Ampezzo

Objectives

Models in a reverse engineering loop

All in all, the main objective of modern biology is to solve a substantial problem of *Reverse Engineering*

- Model: a formal representation, which when
 - validated confirms the validity of the inferred knowledge used to build it
 - invalidated allows postulating new hypotheses and driving definition of experiments

Predictive models

- Validated models are used for predictive purposes
 - refinement of available knowledge through deduction
- Many experimental scenarios hardly accessible in wet-lab experiments may be evaluated at low cost with the in-silico approach
- Example: gene silencing
 - in-silico: set one variable to FALSE
 - wet-lab: DNA engineering or RNA interference
- Experiments run on a model can significantly reduce the effort required in the lab

Modeling approaches in SB

Classical approaches

Biologists mostly use unstructured graphical models for encoding knowledge about systems

- unclear semantics
- lack of quantitative information
- generalizations totally overlooked

A more expressive reaction based specification language has been borrowed from chemistry

- $\circ \emptyset \rightarrow A, \emptyset \rightarrow B$
- \circ A+B \rightarrow C, C \rightarrow A+B+C
- \circ C \rightarrow Ø

Models based on systems of ordinary differential equations

quantitative information expressed in the form of kinetic rate constants

Intrinsic discreteness

- The truly molecular nature of biological interaction was considered hardly tractable
 - tracking single molecule state, location and movement is indeed quite heavy from a computational point of view
- This was considered to be true until 1976, when D. T. Gillespie
 - proved that the evolution of a well-stirred biochemical system can be accurately modeled by a continuous time discrete space Markov process
 - provided a very simple and extremely efficient simulation algorithm for computing realizations of such process
- Gillespie's algorithm (SSA) has paved the way for a number of discrete modeling approaches

Algorithmic approaches

- Algorithmic biology aims at representing causality in biological transformations
- Fueled by Gillespie result, new modeling tools have been proposed
 - discrete state-space
 - stochastic reaction times

Petri Nets

Modeling metaphor

- tokens count the number of molecules of species
- transition model reactions

Firing rates

 Transition rates always dependent on the marking of input places

Process Algebra

Modeling metaphor

- processes represent biological entities
- interactions are represented as communications on a channel

Communications based on affinity

 interaction likelihood is defined through affinities of process

Tools in SB

An historical perspective

- Since the beginning of the Human Genome project, computational support to biology has come through bioinformatics tools
 - String manipulation
 - Databases
 - Data mining
 - Statistical applications (clustering)
- The 90's have seen a spread of tools for continuous modeling borrowed from physics approach to biology
 - ODEs and PDEs solvers
 - Metabolix flux analysis
- During the last decade, tools developed within the computer science community started to be used
 - Petri Nets (1998, Goss-Peccoud) and Process Calculi
 - P-systems
 - Model checking

The current situation

Measures of interest

- Typical quantitative aspects of interest on biological systems
- How resilient is a system to perturbations? If a gene is silenced, what will change in
 - the probability of entering deadly states
 - the speed of metabolism
 - the patterns of genes activation
- What are the likely causes of a wrong system response?
 - which kinetic rate determine the observed phenotype
- How can we interfere on a system that is wrongly responding to bring it back into operation?
 - which reactions should be targeted by a drug
 - which entities should be removed

Domain-specific challenges

Number of entities

- Biological systems have to deal with molecular noise
 - predictable behaviors emerge from large numbers effect
 - in the small volume of a cell nucleus there can be thousands of copies of a molecule type
- Different scales of multiplicities within a single system
 - 1 copy of a gene
 - 10⁹ molecules in one cell nucleus
 - 10⁶ synapses for one neuron
 - 10¹⁴ cells in the human organism
- Immediate consequences on state spaces
 - 10²⁴ states in a toy cell cycle model

Dynamic creation of entities

▶ Biological compounds have *sites* of interaction

- multiple sites can be present in the same entity
- bindings occur reversibly between 2 affine sites
- complexes of biological components can assembly without a precise order and can result in different topological structures
- example: protein C has 2 sites, both affine to 2 sites of protein W

It may be cumbersome or even impossible to specify such a behaviors in many formalisms

Oscillatory behaviors

- Many biological systems achieves equilibrium conditions that are not commonly found in artificial systems
 - living systems keep oscillating
- Many systems have transient oscillation that stop abruptly
 - dead

- This poses issues in
 - defining adequate measures that can characterize cyclic system behavior
 - comparing similar but different systems

Partial system knowledge

Known unknowns

- many biological entities are only partially characterized
- interaction among entities are not always observable and thus values of many parameters to be used in models are unknown

Unknown unknowns

- not all the entities participating in an interaction network are known
- we may not know which abstractions are actually used when defining models

Modularity is only apparent

- the number of roles and functions of entities keeps growing
- one input rarely corresponds to a single response

Solutions devised in SB

To handle big size populations

Continuous approximation

- the number of entities is approximated into a proportional concentration
- variations of concentrations are modeled as changes in their first derivative
- models are sets of non-linear ordinary differential equations, solved through numerical integration

Many tools exist for continuous ODE modeling

- reaction-based languages are commonly used for specification
- ODEs are automatically obtained from reactions
- efficient numerical solvers handle large/stiff models
- time-dependent, equilibrium, vector fields and bifurcation analyses

Work in progress...

 some theoretical and experimental results show interesting relationship between results of discrete and continuous models

To handle dynamic creation of new entities

- Interaction-based modeling languages based on process algebra
- \blacktriangleright BlenX encapsulates π -calculus processes into boxes with interaction capabilities

Evolutions of the internal process change the state of the box and of its interaction capabilities

A separate specification

INTERFACES

- The set of interaction capabilities of entities are modeled by binders
- At any moment, interaction can only happen through visible binders
- Binders are typed

COMMUNICATION RATES

- The rate at which interaction happen through binders is specified by a type affinity table
- Multiple rates can be used to specify rate of start, failure, completion of the interaction

affinities			
U_{1},V_{1}	0	0	0
U_1, V_2	r ₁₂	0	0
U_{1} , V_{3}	<i>r</i> ₁₃	k ₁₃	C ₁₃

....

An example: Web services

- Web services use standardized XML messaging
- Allow for self-descriptive and discoverable services

WDSL WSCI

XML language to specify

- messages: types of data exchanged
- ports: sets of abstract operations defining offered services

XML language to specify

- a refinement of WDSL ports detailing on externally visible interfaces
- who can participate in an interaction
- WDSL and WSCI specifications can be parsed to automatically obtain a BlenX model
- Quantitative information can be added to the model to conduct simulations

To manage unknowns

An ideal abstraction usage: we want to simplify

- ▶ The real abstraction usage: current knowledge only allows building ∠
- However, a good news is that we can obtain rate functions inferred from wet-lab experiments

To speed-up stochastic simulation

- Gillespie's family of Stochastic Simulation Algorithms
- Fundamental hypothesis
 - times of occurrence of every reaction in the system follow a negative exponential distribution
- Let
 - $R_1, R_2, ..., R_m$ the reaction set
 - X(t)=x the state of the system
 - $a_1(\mathbf{x}), a_2(\mathbf{x}), ..., a_m(\mathbf{x})$ the reaction rates , also called *propensities*
 - $a_0(\mathbf{x})$ defined as $\Sigma_j a_j(\mathbf{x})$

Direct method (1976)

Given X(t)=x, the probability that the next reaction happens in the infinitesimal time interval $[t+\tau,t+\tau+dt]$ and is a reaction of type j is

$$a_i(\mathbf{x}) \cdot exp(-a_0(\mathbf{x}) \tau)$$

- the time τ to the next reaction is an exponential random variable of mean $1/a_0(\mathbf{x})$
- the probability that next reaction is of type j is $a_i(\mathbf{x})/a_o(\mathbf{x})$
- At each simulation step, 2 uniform r.n. u and v are drawn
 - τ is chosen to be $\ln(u^{-1})/a_0(\mathbf{x})$
 - *j* is chosen as the smallest integer satisfying $\sum_{i=0}^{\infty} a_i(x) > v \cdot a_0(x)$

$$\sum_{i=1}^{j} a_i(x) > v \cdot a_0(x)$$

Reformulations of the method

First reaction method (1976)

- at each simulation step, draw m uniform r.n. and compute τ_1 , τ_2 ,..., τ_m , the putative time of all reactions
- choose τ as the min(τ_1 , τ_2 ,..., τ_m)
- choose j as the index of the minimum above

Next reaction (2000)

- same as the above one, but the putative times are saved in an indexed binary tree so that the minimum is always at the top
- a dependency graph is used to keep track of coupling among reactions to determine when putative times in the tree have to be resampled

Modified direct method (2004)

- a pre-run to determine a suitable order of reactions to minimize cost of step 2)
- Sorting direct method (2006)
 - self-adaptive version of the one above, no pre-run

To analyze oscillatory regimes

Convert time series to frequency spectra

 $x(t)=\sin(t/10) + \sin(t/20)$

Widely used in hardware

Statistical measures over FA

Spectra of multiple stochastic runs are averaged

Three measures

$$\begin{split} \rho 1 &= \log_2(\max(f_{1..N-1})/\langle f_{1..N-1}\rangle) \ \log(\text{peak/mean}) \\ \rho 2 &= \sigma(f_{1..N-1})/\langle f_{1..N-1}\rangle \qquad \text{coefficient of variance} \\ \rho 3 &= \sup|F_{0..N-1}^1 - F_{0..N-1}^2| \qquad \text{Kolmogorov - Smirnov statistic} \end{split}$$

 $f_{\omega} = \omega^{th}$ complex frequency component, F = cumulative frequency distribution of f

Summary

- Models play a key role in Systems Biology
- Some modeling challenges are shared with computer science, some others are domain specific
- Approaches ant tools are in an explorative phase
- Some solutions independently devised may be useful/improve over current practice in computer science