Model-Based Evaluation of User-Perceived System Quality

John F. Meyer jfm@umich.edu

> WG 10.4 Workshop Cortina d'Ampezzo, Italy January 28, 2009

Outline

- Model-based evaluation in a nut-shell
- Evolution of measure types
 - In the beginning …
 - Xability measures: Dependability, performability, survivability
 - Quality of X measures: QoS, QoE, QoP
- Accounting for the use environment
 - User-observed failures, MTTF
 - Observed reliability, availability
- User satisfaction
 - Objective measures: Performability, QoS
 - Subjective measures: QoE, QoP
- Model-based evaluation of QoE/QoP

Model-based evaluation

- Let S denote the (total) system in question, consisting of an *object system* and its *environment*.
- A probabilistic model of S can then be viewed as a stochastic process X = { X_t | t ∈ I } with state space Q, where
 - *I* is the *time domain* of the model
 - Q can be taken to be the Cartesian product $Q_C \times Q_E$, where Q_C and Q_E are the state spaces of the object system and environment, respectively.
- Just how the underlying process X is
 - specified, e.g., by a SAN, a process algebra, etc.
 - and constructed, e.g., by some modeling tool

is important but is not an issue with respect to the discussion that follows.

Model-based measures

- What S is or does over some designated period T is then represented by one or more measures
 - system-oriented (e.g., resource availability, resource utilization, fault-recovery time, ...)
 - user-oriented (e.g., throughput, end-to-end delay, user-perceived quality, ...)
- More precisely, such a measure can be generally viewed as a random variable Y_T, where
 - $T(T \subseteq I)$ is the period during which the system is utilized or observed (could be a single instant $\{t\}$)
 - Y_T takes values in a designated set A of possible outcomes ("accomplishment levels" in performability jargon)
 - *A* can be binary-valued at one extreme
 - A continuum of values at the other, e.g., the extent to which a user is satisfied with services delivered throughout T

Measure solution

- The underlying stochastic process X needs to be detailed enough to support solution of the probabilistic nature of Y_T,e.g.,
 - its expected value
 - higher order moments
 - pdf or PDF
- Just how such measures are solved is an important and challenging problem.
- However, the remarks that follow refer mainly to the nature of various measure types in the context of computer and communication system evaluation.

A little history

- Early model-based evaluations of computer and communication systems were principally concerned with two types of measures.
- Reliability: What a system is
 - Measures of a system's structural integrity in the presence of faults (independent of how it is used).
 - Includes measures such as availability
- Performance: What a system does
 - Measures of a system's effectiveness and efficiency in the absence of faults.
- System models supporting evaluations thereof had the following characteristics.

Model assumptions

- Reliability models (physical faults)
 - Structure is probabilistic (Q_C consists of structure states only)
 - Dynamics are due in part to
 - rates of fault occurrences
 - durations of recovery actions
 - Use environment is fixed (Q_E has a single state representing a heavy workload with constant utilization)
- Performance models
 - Structure is fixed (Q_C consists of internal states only)
 - Use environment is probabilistic
 - Dynamics are due in part to
 - frequencies and durations of user demands (service requests)
 - workload imposed during active use

Measure implications

- Traditional structure-based measures of system reliability therefore conveyed a binary-valued view of a system's capacity to serve its users:
 - Operational or up, meaning "able to serve"
 - Otherwise the system is non-operational or down
- In most cases, however, this dichotomy does not coincide with what is experienced by a user.
- The difference can be illustrated in terms of something argued long ago by philosophers.

A dilemma

- Consider the age-old question:
 - If a tree falls in the forest and nobody is there to hear it, does it make a sound?
- Analogously,
 - If a system goes down and nobody is using it, does it fail?
- Just as the answer to the first question depends on the definition of sound, the answer here depends on the meaning of fail.
 - If it refers to the loss of a capacity to serve: Yes
 - If it refers to an improperly delivered service: No

Xability measures

- Accordingly, more general types of measures began to emerge in the mid-70s, placing greater emphasis on how delivered services are affected by internal and external faults.
- Xability measures
 - Dependability: Measures of a system's trustworthiness with respect to delivery of a specified service.
 - Performability: Measures of a system's ability to perform (serve its users) throughout a specified utilization period.
 - Survivability: Measures of a system's ability to fulfill a specified mission in a timely manner.

Quality of X measures

- Quality of X measures are likewise concerned with how well services are provided to users.
- These have evolved mainly in the context of telecom, internet, and wireless services.
 - Quality of service (QoS): Objective measures of delivered service.
 - Quality of experience (QoE): QoS as subjectively perceived by end users (end-to-end QoS).
 - Quality of Perception (QoP): Encompasses not only QoE but also end-user ability to analyze and assimilate information provided by the service.
 - Quality of Protection (QoP): Measures of user confidence in system security.
 - Why this increased concern with user satisfaction?

Answer: User-centric applications

- Personal computing
 - Desktops, notebooks, netbooks, …
 - Hand-helds, wrist-tops, …
- Management and control
 - Embedded computers in home appliances, entertainment systems, cars, trains, aircraft, …
 - Home networks, enterprise networks, ATC systems, military C2 systems, …
- Ubiquitous computing
 - Small, inexpensive, robust networked processing devices
 - Distributed at all scales throughout everyday life
- World-wide communication and information sharing

The use environment

- When evaluating systems from a user's perspective, two important aspects of the use environment need to be considered:
 - Input: Dynamics of user demands for service
 - Output: Quality of delivered services
- Both are addressed in the remarks that follow.
- User demands are typically objective in nature, permitting a discussion of their influence in fundamental analytic terms.
- Service quality, on the other hand, can be subjective as well as objective, calling for some higher level considerations.

Use profile

- To illustrate how user demands influence the basic dependability notions of failure, MTTF, and availability, assume the following.
- A user requests services of a system intermittently, represented by a use profile that alternates between time periods of active use and passive use.
- Generally, these periods have random durations.
- However deterministic profiles, e.g., a predetermined schedule of fixed periods of active use, are included as special cases.

Use profile (cont'd)

- During active use, the external workload is that associated with a particular service request
 - Active use begins when that service is requested.
 - It ends when delivery of that service is completed.
- During passive use, a system need not be totally inert (power off) for example, it may occupy itself with self-imposed tasks aimed at maintaining its readiness.

Active utilization

Letting

- D_p = mean duration of passive use
- D_a = mean duration of active use

the mean time *D* between service requests is the sum

$$D = D_p + D_a \; .$$

 To quantify the influence of user demands, we then define the *active utilization* of a system to be the fraction

$$\rho_a = D_a / D$$

Special cases

$$\rho_a = D_a / D = D_a / (D_p + D_a)$$

- In case $D_p = 0$ (no passive use) active use is constant and $\rho_a = 1$.
- At the other extreme, if $D_a = 0$ then $\rho_a = 0$ and the system is never actively used. In this case, user observed failures cannot occur.

- The specific nature of the workload during active use obviously depends on what service is being requested, e.g.,
 - System: Web server
 - Service Demand: A hit followed by a sequence of web transactions (e.g., GET an HTTP document, etc.).
 - Workload: Processing needed to serve the sequence of transactions.
- If service is lost during a period of active use, it is assumed that failure occurs at the time of that loss.
- Similarly, if required capacity to serve is lacking when service is demanded, failure occurs at the time of that demand.

A simple example - Meaningful relationships

- Consider a system where
 - faults arrive as Poisson process with rate λ
 - time to recover from a fault is exponentially distributed with mean recovery time $1/\!\nu$
- When use is active, the workload is sufficiently high to cause a (user-observed) failure when a fault occurs (the system goes down)
- The demand profile consists of alternating exponentially distributed periods of passive and active use, where
 - $D_p = 1/\alpha$: mean duration of a passive period
 - $D_a = 1/\mu$: mean duration of an active period
- Accordingly, its active utilization ρ_a can be expressed as

$$\rho_a = \alpha / (\alpha + \mu)$$

System capacity and use profile:

Mean time to failure

Let

- $p_{\rm F}(t)$ = probability of occupying state F at time t
- MTTF = mean time to (user-observed) failure
- Then with a little work

$$\text{MTTF} = \int_0^\infty t dp_F(t) = \frac{1}{\lambda} \left[\frac{(\alpha + \lambda + \mu)(\alpha + \lambda + \nu) - \alpha \lambda}{\alpha(\alpha + \lambda + \mu + \nu)} \right]$$

If use is constant (1/α = 0) then taking the limit of the above as α → ∞, we have the familiar

$$MTTF = 1/\lambda$$

- N.
- Indeed, constant use (with sufficiently high workload) is a tacit assumption that underlies much of traditional reliability and availability analysis.

Derived parameters

- To better understand the meaning and implications of this MTTF formula, it is helpful to express it in terms of the following derived parameters.
 - 1 $\rho_a = \alpha/(\alpha + \mu)$, the *active utilization* (defined earlier)
 - 2 $\gamma = \lambda/(\lambda + \nu)$, the (constant-use) *unavailability*
 - 3 $\omega = \lambda/\alpha$, the *fault-demand ratio*
- Note that 1 depends only on parameters of the use profile and 2 depends only on parameters of the system.
- However, 3 depends on both, being the ratio of the rate λ at which faults arrive (ignoring recovery periods) and the rate α at which service demands arrive (ignoring active use periods).

Normalized MTTF

• Normalizing MTTF with respect to its constant-use value 1/ λ , i.e., MTTF_n = MTTF/(1/ λ) = λ ·MTTF then

$$\mathrm{MTTF}_{\mathbf{n}} = 1 + \omega \left[1 + \frac{1 - (\rho_a + \gamma)}{\omega \rho_a + \gamma} \right]$$

- Since $0 \le \rho_a \le 1$ and $\omega \ge 0$, the term in brackets is never negative.
- Hence, for all possible values of the involved parameters
 MTTF_n ≥ 1

 In other words, the average amount of time to a userobserved failure is never worse than when use is constant (the tacit assumption of structure-based analysis).

Some further observations

$$MTTF_{n} = 1 + \omega \left[1 + \frac{1 - (\rho_{a} + \gamma)}{\omega \rho_{a} + \gamma} \right]$$

- MTTF_n increases (improves) with
 - decreasing active utilization ρ_a
 - decreasing (constant-use) unavailability γ
 - increasing fault-demand ratio $\omega = \lambda/\alpha$
- In the worst case $\omega=0,$ saying that $MTTF_n=1$ or, equivalently, $MTTF=1/\lambda.$
- Assuming that faults occur (λ > 0), the mean duration 1/ α of a passive period must then be 0, implying that use is constant.
- Hence, constant use is both necessary as well as sufficient (observed earlier) for observed MTTF to specialize to the usual capacity-based notion.

Infrequent use

- Even with small (positive) values of the fault-demand ratio ω , MTTF_n can be appreciable if both active utilization (ρ_a) and unavailability (γ) are small.
- For example, if ω = 0.1 then, for various values of unavailability, the following plots illustrate how MTTF_n varies as a function of small values of active utilization.

Observed reliability and availability

- Similarly, one can obtain closed-form expressions (in terms of system/use parameters) of
 - observed reliability and availability
 - for various assumptions regarding the use profile.
- A couple of recent (21st century) studies in this regard:
 - K. W. Lee, "Stochastic models for random-request availability," *IEEE Trans. Reliability*, March 2000, pp. 80-84.
 - D. Wang and K. S. Trivedi, "Modeling user-perceived service availability," in *Proceedings of the 2nd ISAS*, April 2005, pp. 107-122.

Application-related studies

- Generally, definitions of and models for observed availability tend to be service-specific.
 - Telecom voice/video
 - Web services
 - Web based travel agency LAAS paper, DSN 2003
- In particular, model specification requires detailed information regarding the nature of service demands.
- Issues arising in this context have been challenging enough to warrant a forum and a symposium dedicated to this topic:
 - Service Availability Forum (SAF; www.saforum.org)
 - International Service Availability Symposium (ISAS),
- ISASs have been held annually since 2004
 - ISAS 2005, Berlin (Mirek, Niraj)
 - ISAS 2008, Tokyo (Takashi)
 - ISAS 2009 will be in Budapest (András Pataricza)

The output side

- As noted earlier, two important aspects of the use environment need to be considered when evaluating systems from a user's perspective:
 - Input: Dynamics of user requests for services
 - Output: Quality of delivered services
- We now turn our attention to the output aspect, i.e., the extent to which users are satisfied with services provided by a system.

User-observed quality by measure type

- Performance: Quality of what is delivered (usually via objective measures such at throughput, delay, jitter, etc.), presuming service is delivered correctly (system is fault-free).
- Dependability: Service quality to the extent that a service is delivered properly in the presence of faults (a failure occurs if it is not).
- Performability: Unification of performance and dependability: Quality of service delivered throughout a specified utilization period (perhaps unbounded).

 QoS (per ITU-T def.): The "collective effect" of service performances (including dependability) which determine the degree of satisfaction of a user of the service.

Performability and QoS

- Similarities between performability and (telecom) QoS were first discussed in the late 80s and early 90s, e.g.,
 - J. F. Meyer, "Performability evaluation of telecommunication networks," in *Teletraffic Science*, M. Bonatti, Ed., North-Holland, 1989, pp. 1163--1172.
 - A. van Moorsel and B. Haverkort, "A unified performability evaluation framework for computer and communication systems," in *Proc. 2nd Int'l Workshop on Performability Modelling* of Computer and Communication Systems, Le Mont Saint-Michel, France, June 1993.
- Differences:
 - Performability evaluation has been predominantly measure-driven and model-based since its inception.
 - QoS, on the other hand, has suffered from a lack of measure development, e.g., means of formulating the socalled "collective effect" of lower level "performances."

Performability & QoS (cont'd)

- Accordingly, QoS models often take the form of a performability model with service-quality semantics for the performability measure(s) Y_T.
- Until recently, however, QoS has been expressed mainly in objective terms.
- Quoting a Nokia Siemens expert (Kalevi Kilkki, JUCS, Jan. '08):
 - "In 1999, when an almost passionate effort to incorporate QoS into Internet took place at IETF (Internet Engineering Task Force), I wrote the following definition:

QoS is a set of attributes that can be used to define the network's capability to meet the requirements of users and applications.

Now I am inclined to remove users from that definition and keep QoS purely as a technical concept that is used to facilitate the interactions between applications and network services."

User-perceived quality

- In an effort to differentiate more subjective measures of user-perceived quality from current QoS definitions, additional Quality of X concepts have emerged over the past several years.
 - Quality of experience (QoE) per a recent definition by ITU-T Study Group 12 (Geneva, January 2007):
 - The overall acceptability of an application or service, as perceived subjectively by the end-user.
 - Quality of perception (QoP):
 - End-user perception (as in QoE) along with an understanding and assimilation of what is perceived.

From QoS to QoE/QoP

- What then distinguishes QoE/QoP modeling from more usual performability/QoS modeling?
- Short answer: High level experiments and measurements.
- Generally, obtaining numerical evaluation results for even the simplest models (analytic or simulation) requires results of real-world measurements to determine values of underlying model parameters.
- More complex models typically need additional experimental data, e.g., values for reward model rates and impulses
 - obtained either directly via measurements
 - or indirectly from lower level evaluations (whose models require measurement data for their parameter values).

Top as well as bottom

- Hence, in addition to requiring experimental data for low level parameters, QoE/QoP evaluation calls for experimentation at the top level involving actual users.
- In the context of voice and video services, this has come to be known as *subjective quality assessment* (SQA).
- Generally, SQA is accomplished using a panel of human observers who, following specified rules under controlled experimental conditions, assign precise numerical quality values to what is observed.

Example: SQA of video streams

- There are many ways to conduct SQAs and some have been standardized.
- Subjective video quality has perhaps received the most attention, e.g., as prescribed by
 - ITU-R recommendation BT.500-11
- Problems with SQA:
 - Very expensive in terms of time and human resources
 - Controlled conditions often exclude fault effects that can alter what a user perceives
- For example, SQAs associated with evaluating video codecs account for degradation due to compression algorithms but not for effects caused by accidental or malicious causes.

Incorporating SQA results in QoE/QoP models

- So what needs to be done?
- Given subjective quality data, such as provided by SQA results, model-based QoE/QoP evaluation can accomplished by extending known performability/QoS modeling techniques as follows.
 - To Define meaningful QoE/QoP measures Y_T in terms of subjective quality assessment values.
 - Relative to a given measure Y_T (or a set of such measures), specify and construct a system model that accounts for input parameters of the SQA experiments via
 - parameters of the underlying stochastic process X
 - reward assignments that sit on top of X, etc.

Nature of the challenges

- Both are challenging problems.
- Regarding 1), values of Y_T can have a variety interpretations relating to experienced or perceived quality, e.g.,
 - Y_T = accumulated subjective quality experienced during T
 - Y_T = average subjective quality during T
- Moreover, values in the codomain of Y_T need not be quality levels or rates, per se. As with objective QoS, Y_T can specialize to a dependability type measures, e.g.
 - Y_T = the fraction of the utilization period T during which subjective quality is at or above some of acceptable numerical value (interval

availability)

Nature of the challenges (cont'd)

- Challenge 2) calls for
 - a thorough knowledge of the associated quality assessment method
 - Innovative model specification/construction techniques that transcend what's needed for objective quality measures.
- And achieving 2) is obviously the key to successful formulation and solution of the QoE/QoP measures in question.

Conclusion

- Since the introduction of the concepts of QoE and QoP, considerable attention has been devoted to quality assessment methods such as SQA.
- However, model-based evaluation of QoE/QoP remains in a relatively early stage of development.
- An example of recent progress in this regard is work of the Armor project in France (G. Rubino):
 - Video perception, PSQA, application to P2P systems
 - Ref: G. Rubino, et al., "Coupling QoE with dependability through models with failures," presented at *PMCCS-8*, Edinburgh, Scotland, Sept. 2007.
- The good news: A lot of exciting work remains to be done!

WG 10.4's last <u>true</u> "Winter Meeting"

#31 W'97 Garmisch-Partenkirchen, DE

Great to be in Cortina 24 meetings later!!!!