
1

© H. Kopetz 4/17/09

TU Wien

Complexity Management in

GENESYS

H. Kopetz

January 2009

2

© H. Kopetz 4/17/09

GENESYS--Driven by the ARTEMIS Requirements

GENESYS is an FP 7 project that is developing an

architectural framework for the design and

implementation of cross-domain embedded systems

that meet the ARTEMIS requirements.

Project Partners (23): TU Vienna (Coordinator), Nokia,
Infineon, Thales, STMicroelectronics, NXP, Fiat, Volvo,
TTTech, Ikerlan, IMEC, et al.

Project duration: Jan 2008 - June 2009

3

© H. Kopetz 4/17/09

Requirements for the ARTEMIS Architecture

In a two year effort, following requirements have been
identified for the cross-domain embedded system architecture
by an ARTEMIS expert group:

Composability

Networking and Security

Robustness

Diagnosis and Maintenance

Integrated Resource Management

Evolvability

Self Organization

Detailed requirements document at the ARTEMIS website
https://www.artemisia-association.org/downloads/RAPPORT_RDA.pdf

4

© H. Kopetz 4/17/09

What are Characteristics of GENESYS?

The following properties are characteristic for the
cross-domain architectural style of GENESYS:

Strict Component Orientation

Openness

Hierarchy of Services

Deterministic Core

Standard Internet Integration

5

© H. Kopetz 4/17/09

Complexity Management

The architectural style of GENESYS deploys the following

simplification strategies to reduce the complexity of a design:

Partitioning: The partitioning of a system into nearly

autonomous subsystems (components).--Physical Structure

Abstraction: The introduction of abstraction layers whereby

only the relevant properties of a lower layer are exposed to

the upper layer--Structure and Behavior

Segmentation: The temporal decomposition of complex

behavior into small parts that can be processed sequentially

(“step-by-step”)--determinism helps

6

© H. Kopetz 4/17/09

What is a GENESYS Component?

A GENESYS component is a

 Hardware/software unit that accepts input messages, provides a
useful service, maintains internal state, and produces after some
elapsed time output messages containing the results. It is aware of the
progression of physical time.

Unit of abstraction, the behavior of which is captured in a high-level
concept that is used to capture the services of a subsystem.

Fault-Containment-Unit (FCU) that maintains the abstraction in case
of fault occurrence and contains the immediate effects of a fault (a
fault can propagate from a faulty component to a component that has
not been affected by the fault only by erroneous messages).

Unit of restart, replication and reconfiguration in order to enable the
implementation of robustness and fault-tolerance.

7

© H. Kopetz 4/17/09

The Interfaces of a GENESYS Component (i)

Hardware/Software
Unit

Linking Interface LIF--
Provides the service

to the User

Local Interface--
to the Environment

(unspecified)
Technology
Independent

Interface
(TII)

Technology
Dependent
Interface

(TDI)

Configuration
Restart
Reset
Power level

For the
(remote)

Maintenance
Expert

Connection to local sensors, actuators,
man-machine interface, other systems

Relevant for the integration of components

Meta-level:View Inside

8

© H. Kopetz 4/17/09

Openness: Soft versus Hard Components

The Linking Interface (LIF) of all three different component
implementations should have the same syntax, timing and

semantics. For a user, it should not be discernible which type of
component is behind the LIF.

Application
Software
Module

API

Hardware

Operating System and Middleware

Communication Network Interface
I O

Local Interfaces--Open Components

9

© H. Kopetz 4/17/09

Abstraction: Model Driven Design

Domain Specific Application Model
(e.g., expressed in UML)

Platform Independent Model (PIM) expressed
in a High-Level Language (e.g., System C).

Platform
Specific
Model (PSM)
(nonfunctional
properties)

Platform Independent
Model(PIM) focuses on
functionality and time

10

© H. Kopetz 4/17/09

Performance Trends--Power
Gops/Watt

1990 1995 2000 2005 2010

1

10

100

1000

0.1

0.01

ASIC

FPGA

CPU

Ref: Lauwereins, Imec, MSOP 2006

Cell

11

© H. Kopetz 4/17/09

Component Integration: Principles of Composability

(1) Independent Development of the Components (Architecture)
The interfaces of the components must be precisely specified in the
value domain and in the temporal domain in order that the
component systems can be developed in isolation.

(2) Stability of Prior Services (Component Implementation)
The prior services of the components must be maintained after the
integration and should not fail if a partner fails.

(3) Non-Interfering Interactions (Communication System)
The communication system transporting the messages must meet
the given temporal requirements under all specified operating
conditions.

(4) Preservation of the Component Abstraction in the case of
failures (Architecture) and provision of a communication system
with error containment.

12

© H. Kopetz 4/17/09

Communication in GENESYS

The core communication primitive in GENESYS is the
unidirectional deterministic multi-cast message:

Uni-directionality is required in order to decouple
communication from computation (fate-sharing principle).

Determinism is required to
• establish timeliness
• simplify the reasoning about the behavior (modus pones)
• simplify testing (repeatable test cases)
• be able to implement active replication (TMR)
• Support of certification

Multi-cast is required to support the independent observation
of the component behavior

13

© H. Kopetz 4/17/09

Error Containment by the Communication System

 It is impossible to maintain the
communication among the
correct components of a RT-
cluster if the temporal errors
caused by a faulty component
are not contained.

 Error containment of an
arbitrary temporal node failure
requires that the
Communication System is a
self-contained FCU that has
temporal information about
the allowed behavior of the
nodes-- it must contain
application-specific state.

Temporal Error Containment Boundary

Communication
System

Babbling idiot

14

© H. Kopetz 4/17/09

GENESYS Communication Services

GENESYS introduces three communication services

Sporadic Messages
• characterized by two queues, one at the sender site and one at the receiver

site
• Exactly once semantics
• Normally best effort

Periodic Messages
• No queues, non-consuming read, update in place
• Temporal guarantees

Real-time data streams
• Guaranteed bandwidth and timing
• Queues with watermark management

Openness: Any communication protocol (wire-bound or wireless)
that provides these services can be used in GENESYS

15

© H. Kopetz 4/17/09

Partitioning: Integration Levels

In GENESYS we introduce three integration levels:

Chip Level: the components are IP-cores, interconnected by a NoC
(network on Chip) to form a Chip

Device Level: the component are chips interconnected by an inter-
chip communication system to form a Device. A device can be an
addressable entity in the Internet and can have an IP-Address (as
well as a chip, if desired).

System Level: The components are devices that are interconnected
by a wire-bound or wireless communication service:

•Closed Systems: System structure is static.

•Open Systems: System structure is dynamic, i.e., devices can come
and go

16

© H. Kopetz 4/17/09

A GENESYS System-on-a-Chip: Chip-Level

Standard components
(IP-cores):

External Memory
Manager

Resource Manager

Diagnostic Core

Ethernet Gateway

Application components

Two CPUs with
application software

DSP Engine

FPGA Fabric

TT-NoC
Multi-
casting

TISS

TISS

I/O

CPU

Memory

FPGA
Fabric

Resource
Manager

Ethernet
Gateway

DSP
Engine

I/O

CPU

Memory

External
Memory

External
Memory
Manager

Dia-
gnostic
Core

LIF

LIF

Local Interface

17

© H. Kopetz 4/17/09

Device-Level:

Chips are linked by intra-device-
level LIFs to form a device.

Viewed from the intra-chip level,
the intra-device level LIF is a local
interface (and vice versa).

The intra-device level LIF carries its
own LIF Specification that
comprises all subsystems that are
connected to this device.

Openness: The open LIF
specification makes it possible to
integrate legacy systems.

LIF

LIF

18

© H. Kopetz 4/17/09

System Level:

Device A

Devices are linked
by

System Level LIFs

We distinguish
between

Open

Closed

Systems.

Device B

Wirebound or Wireless

LIF LIF

19

© H. Kopetz 4/17/09

Abstraction: Hierarchy of GENESYS Services

Different
Implementation Choices

Core

DSC

Application

MW

DS

 Domain Specific Optional (DSO) Services

Domain Specific Central (DSC) Services

 Optional Services

Core Services

Application Specific Services,

Including Middleware

e.g., Message Transport

Clock Synchronization

Robustness

Security

e.g., CAN

20

© H. Kopetz 4/17/09

Typical Optional Services

Integrated Resource Management

Diagnostic and Robustness Services

Security Services

Man-Machine Interface via a Web Browser

Internet Connectivity-- Internet of Things

Voting Service for Triple Modular Redundancy

Overlay Network Service for domain-specific
protocols (e.g., CAN, Most, ETHERNET)

21

© H. Kopetz 4/17/09

Segmentation: Determinism Helps

Determinism: A model behaves deterministically if
and only if, given a full set of initial conditions (the
initial state) at time to, and a sequence of future
timed inputs, the outputs at any future instant t are
entailed.

Initial
State

Final
State

System

Time

22

© H. Kopetz 4/17/09

Behavior of an Indeterminate System

Initial
State

Final
State 1

Final
State 2

Final
State 3

Final
State 4

First Forking
Point (Random)

Second Forking
Points (Random)

Time

Exponential Growth

23

© H. Kopetz 4/17/09

Conclusion

The cross domain Architectural Style of GENESYS supports
a strict component-based design style and supports the
straightforward composition of systems out of components.

The stable core-services of GENESYS, which can be
implemented cost-effectively in hardware, are the basis for
the realization of flexible domain specific higher-level
services.

The Architectural Style of GENESYS supports the
established simplification strategies of Partitioning,
Abstraction and Segmentation

The deterministic core services of GENESYS simplify the
reasoning about the behavior (segmentation).

