Reliability of 1oo2 Software-based Systems in which one Channel is "Possibly Perfect"

Bev Littlewood
Centre for Software Reliability, City University, London

John Rushby
Computer Science Laboratory, SRI, Menlo Park, California
The set-up

• 1-out-of-2 design-diverse, 2-channel software based system
• We are interested in probability of failure on demand (pfd)
 – E.g. reactor protection system
 – But much of what we say here may also apply in wider contexts, e.g. continuously operating fault tolerant systems
• We know such fault tolerant approaches can be effective ways to achieve reliability
 – E.g. reliability in eventual operational use of the Airbus A320 and later fault tolerant flight control systems?
• BUT…..
There’s a problem:

Although such an approach may work “on average” (in some sense), it’s hard to know whether it has worked in a particular instance - and how reliable the resulting system will be in operation

- Cannot assume independence of version/channel failures
 - In fact they will not fail independently

- $Pfd_{sys} > pfd_A \cdot pfd_B$
 - Experiments tell us this
 - So does theory

- Need to know “how dependent” the failure processes of the different channels are

- Measuring this is as hard as measuring Pfd_{sys} by treating it as a black box

- So… an impasse?
A possible way out

Consider a 1oo2 system in which channel A is “highly functional”, and therefore complex, *but channel B is simpler and thus possibly “perfect”*

- Perfect means it will never experience a failure
- Possibly perfect means there is some uncertainty about its perfection
 - In particular there is a probability of imperfection
- For A our uncertainty concerns whether it will fail on a randomly selected demand: probability pfd_A
- for B our uncertainty concerns whether it is not perfect: probability pnp_A
Aleatory and Epistemic Uncertainty

• Aleatory uncertainty is “uncertainty in the world”, or irreducible uncertainty
 – Uncertainty about A failing, about B not being perfect - both involve aleatoric uncertainty

• Epistemic uncertainty is “uncertainty about the world”, or reducible uncertainty
 – Sometimes called “model uncertainty”
 – E.g. uncertainty about the size of pfd_A and of pnp_B

• We now analyse our system in two stages: aleatoric, then epistemic

But now suppose for the moment we know $pfd_A = p_A$ and $pnp_B = p_B$…
Aleatoric uncertainty for 1oo2 system

\[P(\text{system fails on randomly selected demand} \mid pfd_A = p_A, pnp_B = p_B) \]
\[= P(\text{system fails} \mid A \text{ fails, } B \text{ not perfect, } pfd_A = p_A, pnp_B = p_B) \times P(A \text{ fails, } B \text{ not perfect} \mid pfd_A = p_A, pnp_B = p_B) \]
\[+ P(\text{system fails} \mid A \text{ succeeds, } B \text{ not perfect, } pfd_A = p_A, pnp_B = p_B) \times P(A \text{ succeeds, } B \text{ not perfect} \mid pfd_A = p_A, pnp_B = p_B) \]
\[+ P(\text{system fails} \mid A \text{ fails, } B \text{ perfect, } pfd_A = p_A, pnp_B = p_B) \times P(A \text{ fails, } B \text{ perfect} \mid pfd_A = p_A, pnp_B = p_B) \]
\[+ P(\text{system fails} \mid A \text{ succeeds, } B \text{ perfect, } pfd_A = p_A, pnp_B = p_B) \times P(A \text{ succeeds, } B \text{ perfect} \mid pfd_A = p_A, pnp_B = p_B) \]

Assume, conservatively, that if \(B \) is imperfect it fails whenever \(A \) does

\[P(\text{system fails on randomly selected demand} \mid pfd_A = p_A, pnp_B = p_B) \]
\[= P(A \text{ fails, } B \text{ not perfect} \mid pfd_A = p_A, pnp_B = p_B) \]
Aleatory uncertainty (contd)

\[P(A \text{ fails, } B \text{ imperfect} \mid pfd_A = p_A, pnp_B = p_B) \]
\[= P(A \text{ fails} \mid B \text{ imperfect}, pfd_A = p_A, pnp_B = p_B) \]
\[\times P(B \text{ imperfect} \mid pfd_A = p_A, pnp_B = p_B) \]

(Im)perfection of \(B \) tells us nothing about the failure of \(A \) on this demand; hence,

\[= P(A \text{ fails} \mid pfd_A = p_A, pnp_B = p_B) \]
\[\times P(B \text{ imperfect} \mid pfd_A = p_A, pnp_B = p_B) \]
\[= p_A \times p_B \]

Compare with two (un)reliable channels, where failure of \(B \) on this demand does increase likelihood \(A \) will fail on same demand

\[P(A \text{ fails} \mid B \text{ fails}, pfd_A = p_A, pfd_B = p_B) \]
\[\geq P(A \text{ fails} \mid pfd_A = p_A, pfd_B = p_B) \]
Epistemic uncertainty for 1oo2 system

• We have shown that the events “A fails” and “B is imperfect” are conditionally independent at the aleatoric level
 – Probability of system failure is (conditionally) $p_A \times p_B$

• Remaining uncertainty centres only on p_A and p_B

• We represent this **epistemic uncertainty by**

$$F(p_A, p_B) = P(pfd_A < p_A, pnp_B < p_B)$$
 – E.g. could think of this as his Bayesian posterior distribution when an assessor has collected evidence from testing, verification, other kinds of analysis, etc, etc

• The unconditional (**subjective**) probability of system failure is

$$\int_{0\leq p_A \leq 1} \int_{0\leq p_B \leq 1} p_A p_B dF(p_A, p_B)$$
Epistemic uncertainty (contd)

- The *only* source of dependence in the model comes in via F
- If this were to factorise, i.e. assessor’s beliefs about the parameters were independent,
 $P(\text{system fails on randomly selected demand}) = P(\text{A fails, B not perfect})$

\[
= \int_{0 \leq p_A \leq 1} \int_{0 \leq p_B \leq 1} p_A p_B dF(p_A, p_B)
\]

\[
= \int_{0 \leq p_A \leq 1} p_A dF(p_A) \times \int_{0 \leq p_B \leq 1} p_B dF(p_B)
\]

And the assessor’s task is reduced to estimating just the two posterior (marginal) means
- But this will never be true!
Reliability estimation of 1oo2 system

• Most assessors would find it hard to tell us what their F is
• So what can be done?
• Well….where does the “dependency of beliefs” about the parameters come from?
• A source of dependency is the possibility of common faults at a high level, e.g. misunderstanding of system requirements
• One way forward is to place probability mass, say C, at the point (1,1) in the (p_A,p_B)-plane to represent the assessor’s (subjective) probability that there are such faults
• The effect of this is conservative: if there are such faults he believes A fails with certainty, and B is not perfect with certainty
 – there is a chance C that $p_A.p_B=1$, i.e. that the system is certain to fail
Reliability estimation (contd)

\[P(\text{system fails on randomly selected demand}) = \int_{0 \leq p_A \leq 1} \int_{0 \leq p_B \leq 1} p_A p_B dF(p_A, p_B) \]

\[= C \times \int p_A p_B dF(p_A, p_B \mid p_A = p_B = 1) + (1 - C) \times \int p_A p_B dF(p_A, p_B \mid p_A, p_B \neq 1) \]

But the last integrand factorises, so

\[P(\text{system fails on randomly selected demand}) = C + (1 - C) \times \int p_A p_B dF(p_A, p_B \mid p_A, p_B \neq 1) \]

\[= C + (1 - C) \times P_A^* \times P_B^* \]
Discussion

Of course this is not a silver bullet. But…

• The handling of aleatory uncertainty is greatly simplified compared with the case of two *certainly fallible* channels

• The architecture *is* a special one, but it is very plausible for certain applications
 – E.g. as a means of *achieving* reliability for, say, a protection system; or for functional channel plus monitor; or highly functional channel plus get-you-home channel

• The conservative bottom-line result involves only *three parameters* and it may be possible to estimate these for real systems