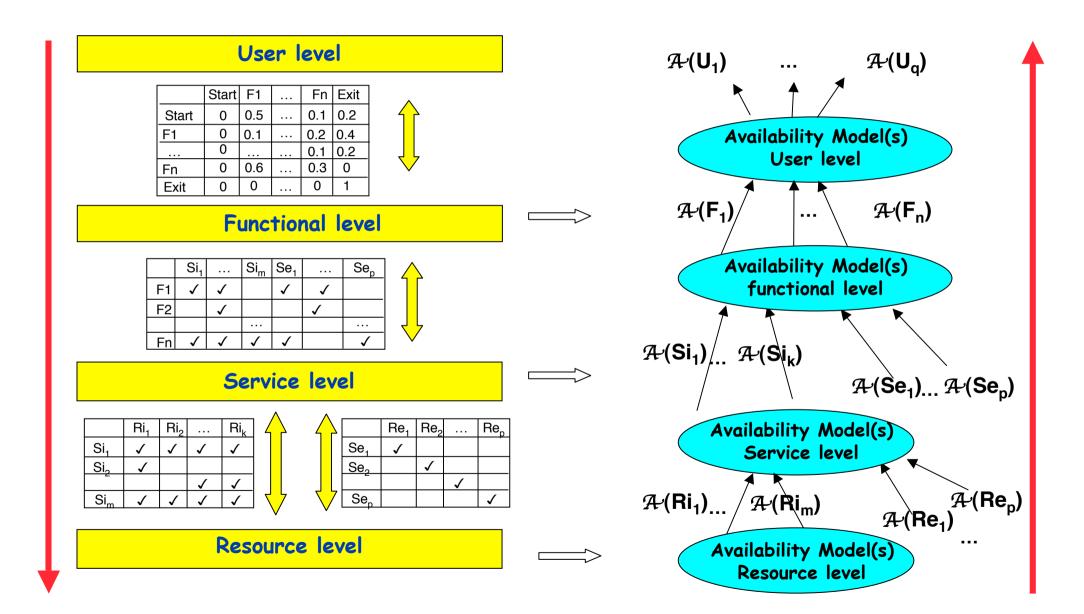
Challenges in Dependability Evaluation of Large Scale Systems

Karama Kanoun

IFIP WG 10.4, 54th meeting, Alyeska, Alaska — June 27-30, 2008


Context

- Objectives of (benefits from) dependability evaluation
 - → B1: Select appropriate system / architecture / recovery techniques / tradeoffs
 - → B2: Characterize system dependability in a rational way
 - ♦ B3: Plan maintenance
 - ◆ B4: Improve system dependability
 - → B5: Formulate service level agreements
 - → B6: On-line monitoring
- Approaches
 - → Measurements, experimentation, modeling
- - ◆ System users, designers, providers, regulators

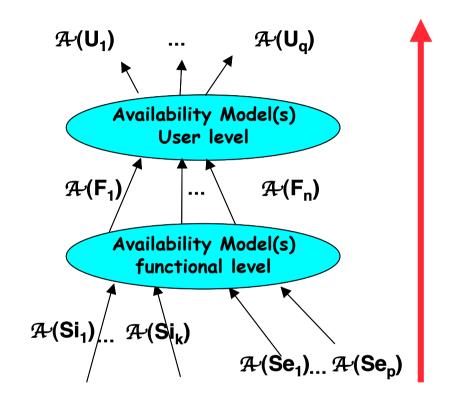
Current State of Practice

- Safety critical systems, control systems, small and medium size
 - → Common use
 - **♦** B1 B4
 - ◆ Analyses performed during system design or operation
 - ◆ After updates, new analyses?
- - → Classical approaches: compositional, hierarchical
 - ◆ End-to-end scenarios

Hierarchical Approaches for Modeling LSS Dependability

Hierarchical Approaches for Modeling LSS Dependability

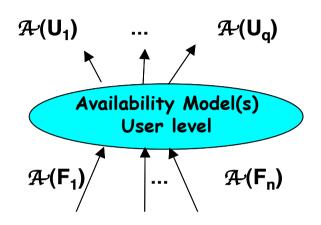
	Start	F1	 Fn	Exit
Start	0	0.5	 0.1	0.2
F1	0	0.1	 0.2	0.4
	0		 0.1	0.2
Fn	0	0.6	 0.3	0
Exit	0	0	 0	1


Functional level

	Si ₁		Si _m	Se ₁		Se _p
F1	1	✓		✓	✓	
F2		✓			✓	
						•••
Fn	√	√	✓	✓		✓

Service level

Hierarchical Approaches for Modeling LSS Dependability


User level

	Start	F1	 Fn	Exit
Start	0	0.5	 0.1	0.2
F1	0	0.1	 0.2	0.4
	0		 0.1	0.2
Fn	0	0.6	 0.3	0
Exit	0	0	 0	1

Functional level

Difficulties when Modeling LSS Dependability

- System structure and boundaries unknown
- Continually evolving systems
- Large number of users with different (unknown?)
 - **→** Expectations
 - ◆ Profiles
 - **♦** Skills
 - **◆** Mobility
- Service(s)?
- Measure(s) of dependability?
- Prediction?

Challenges in Modeling LSS Dependability

- High level abstraction modeling
- Assessment in the presence of perpetual evolution
 - ◆ Short-term, Medium-term, Long-term
- On-line evaluation as a support for
 - **♦** Diagnosis
 - ◆ Selection of system (re)configuration
 - ◆Adaptation to changes / evolutions
- Security evaluation
- Dependability benchmarks?