Telematics/ITS R&D Opportunity

Yennun Huang
前言 - 車載之交通安全議題

- 歐盟於2005年發生1.3M件道路交通事故，四萬一千人死亡、二百萬人受傷
- 美國每年約有六百萬件行車事故，四萬一千人死亡。
 - 財產損失約為$150 billion
 - 駕駛疏失約為76%事故發生的主因（可用車載技術克服）
Taiwan ITS Industry Development Objectives

– Gas consumption reduced by 20%
– Automobile accidents lowered by 20%
– Usage of public transportation increased by 60%
– OBU worldwide market share: 20%+、DSRC: 30%+
Market Potential

• **Total Revenue (2010)**

 - 全球 Telematics 市場規模 (包括: 硬體製造、軟體設計、內容整合、服務提供) 將達 $42 billion (IDC)

 - 在理想情況下 (消費者普遍接受、無其他法規限制、應用成熟), 全球 Telematics 市場總值高達 $100 billion (McKinsey)
Telematics 演進

- **1G Telematics (V2Zero)**
 - 為獨立運作之系統如車輛多媒體系統，地圖導航系統
 - 缺乏或僅有少部分無線通訊功能

- **2G Telematics (V2S)**
 - 透過通訊裝置與服務提供者互動
 - 以GPS為基礎提供駕駛行車動態導航、ETC及vehicle Infotainment等應用服務
 - GM OnStar, Toyota G-Book, 裕隆 TOBE

- **3G Telematics (X2X)**
 - 透過V2I, V2V, P2X等手段與建置將車、人及服務連結提供安全警示與防護、效率提升、殘障輔助與先進Infotainment服務
DSRC Applications By V2V or V2I

• Between Vehicles:
 – Approaching Emergency Vehicle Warning
 – Blind Spot Warning
 – Cooperative Adaptive Cruise Control
 – Cooperative Collision Warning
 – Cooperative Forward Collision Warning
 – Emergency Electronic Brake Lights
 – Highway Merge Assistant
 – Lane Change Warning
 – Post-Crash Warning
 – Pre-Crash Sensing
 – Vehicle-Based Road Condition Warning
 – Vehicle-to-Vehicle Road Feature Notification
 – Visibility Enhancer
 – Wrong Way Driver Warning

• Between Vehicles and Infrastructure:
 – Blind Merge & Curve Speed Warning
 – Emergency Vehicle Signal Preemption
 – Highway/Rail Collision Warning
 – Intersection Collision Warning
 – In-Vehicle Amber Alert
 – In-Vehicle Signage
 – Just-In-Time Repair Notification
 – Left Turn Assistant
 – Low Bridge Warning
 – Low Parking Structure Warning
 – Pedestrian Crossing Information at Intersection
 – Road Condition Warning
 – Safety Recall Notice
 – SOS Services
 – Stop Sign Movement Assistance
 – Stop Sign Violation Warning
 – Traffic Signal Violation Warning
 – Work Zone Warning

Source: 經濟部技術處車載資訊通訊先期研究計畫，資策會整理，2008年02月
Why & How Toward “Mandatory” Telematics Service

- **Safety:** Reduce societal costs of **CRASHES**
 - 43,000 deaths & 3 million injured/year, $230 billion in property damage in US

- **Efficiency:** Reduce societal costs of **CONGESTION**
 - Personal / business hours lost in traffic
 - Gasoline wasted
 - Inconvenience of missed schedules

Cooperative Crash Warning/Prevention

- Reduce Affects of Driver Distraction
- Minimize Affects of Driver Error
- Cars that refuse to crash

Micro-scope Congestion Mediation

- Improve traffic information
- Improve Situational Roadway Awareness
- Manage Traffic Flow

Japan Smartway (04~07)

- 2006年制定“2012年交通事故死亡人数降至5000人以下”目标，并表示将采用汽车间通信等新技术。
- 目前Focus在V2I，预计2010年全国布建。
- 正在制定V2V DSRC标准。

US VII Initiative

- 採用802.11p/WAVE DSRC標準。
- 2010年後提案呈交國會，2011~2012年全國布建
- 專案成立VII Consortium
- 補助8大車廠開發DSRC, OBE及RSE
- 於加州與密西根州進行field trial（2007-2008）

Europe eCall Activity (06~10)

- 推動各國於2010年新車款將eCall列為標準配備
- 2008年起進行field tests
- 歐洲由民間組織發展DSRC之標準與應用，eCall只是一例(如Car2Car, PReVENT, GST等)，但採用802.11p機會很高。

車載應用情境 - 以T-system T-City為例

+ V2I & V2V for Safety Enhancement & Fine Grain Traffic Optimization
+ WSN for pedestrians Telematics

Source: T-City Project - Deutsche Telekom, 2007
<table>
<thead>
<tr>
<th>Application Development Roadmap (draft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>• Enhanced route/travel guide & navigation</td>
</tr>
<tr>
<td>• MAP & media updates</td>
</tr>
<tr>
<td>• Appointment Confirmation / Changes</td>
</tr>
<tr>
<td>• Parking lot payment</td>
</tr>
<tr>
<td>• ETC</td>
</tr>
<tr>
<td>• Specific commercial vehicle fleet management</td>
</tr>
<tr>
<td>• Traffic sign/signal violation warning</td>
</tr>
<tr>
<td>• Assisted lateral control</td>
</tr>
<tr>
<td>• Pre-/Post-crash warning</td>
</tr>
<tr>
<td>• Just-In-Time repair notification</td>
</tr>
<tr>
<td>• In-vehicle signage/diagnostics</td>
</tr>
<tr>
<td>• Safety recall notification</td>
</tr>
<tr>
<td>• Intelligent Speed Advisory and Control</td>
</tr>
<tr>
<td>• Drive-Through Payment/Notification</td>
</tr>
</tbody>
</table>

Source: 經濟部技術處車載通訊先期研究計畫，資策會網多所整理，2008年03月

© 2008 資訊工業策進會
Dependability Challenges

• Reliability:
 – Weather, collision, human error
 – Technologies: Image and voice recognition

• Scalability:

• Security and Privacy:
 – Authentication, Intrusion
 – Information sharing
 – Fraud

• Communication:
 – Multimodal: DSRC, WiFi, WiMax, etc.
 – Ad-hoc
 – Interference
~ END ~