

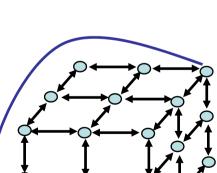
How to Deal with State Space Explosion Some Thoughts about the Analysis of Large Markov Models for Dependability Analysis

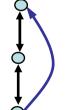
Peter Buchholz Informatik IV TU Dortmund Germany

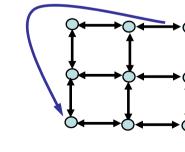
- Systems are built from connected components
- Problem of state space explosion J components with n_i states each (j = 1,...,J) result in $O(\Pi n_i)$ states
- For J components we obtain a J-dimensional transition system

Peter Buchholz, Jun-08

Functional Analysis – Model Checking can deal with state space explosion!







Representation of multi-dimensional structures at a state level

 \Rightarrow Tensor-Algebra

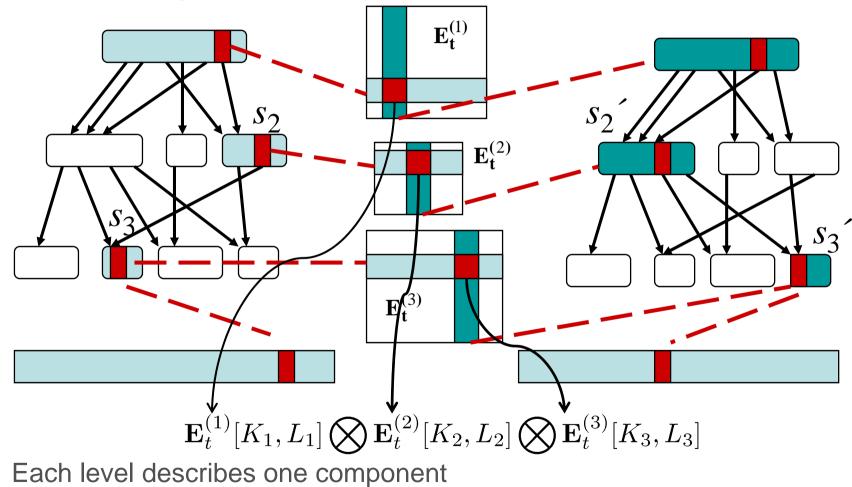
implicit encoding of transition relation using products

Basic representation of a transition matrix

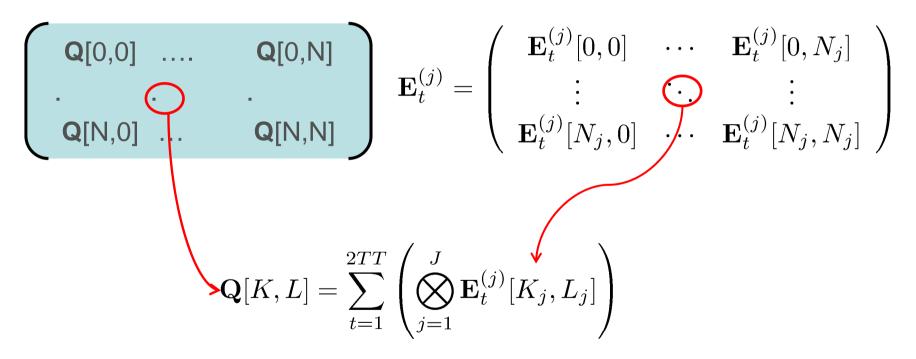
$$\mathbf{Q} = \sum_{t=1}^{2TT} \left(\bigotimes_{j=1}^{J} \mathbf{E}_{t}^{(j)} \right) \quad \text{ where } \mathbf{E}_{t}^{(j)} \text{ is } \mathbf{n}_{j} \times \mathbf{n}_{j}$$

Implicit assumption everything is reachable (often not realistic) \Rightarrow more sophisticated coding is necessary

Implict coding via Matrix Diagrams (or similar data structures)



Hierarchical representation (micro states per macro state)

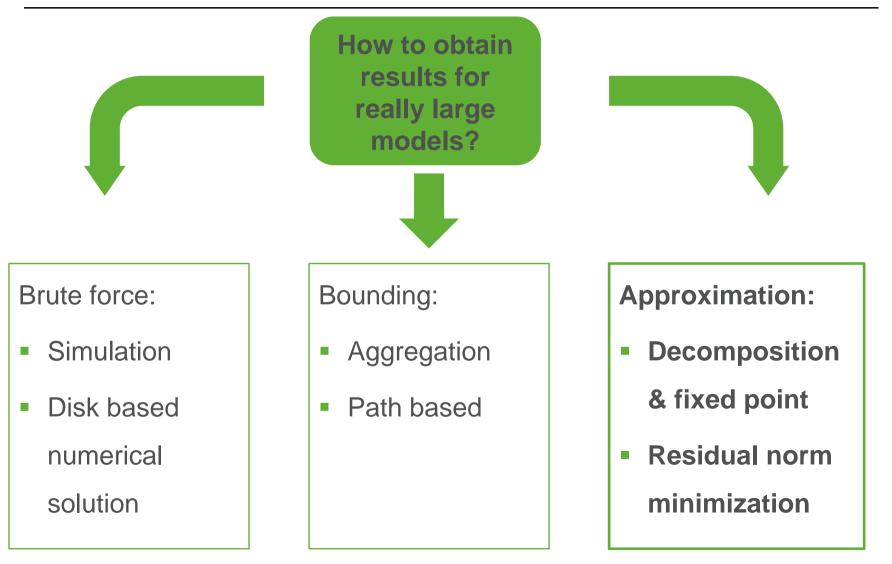


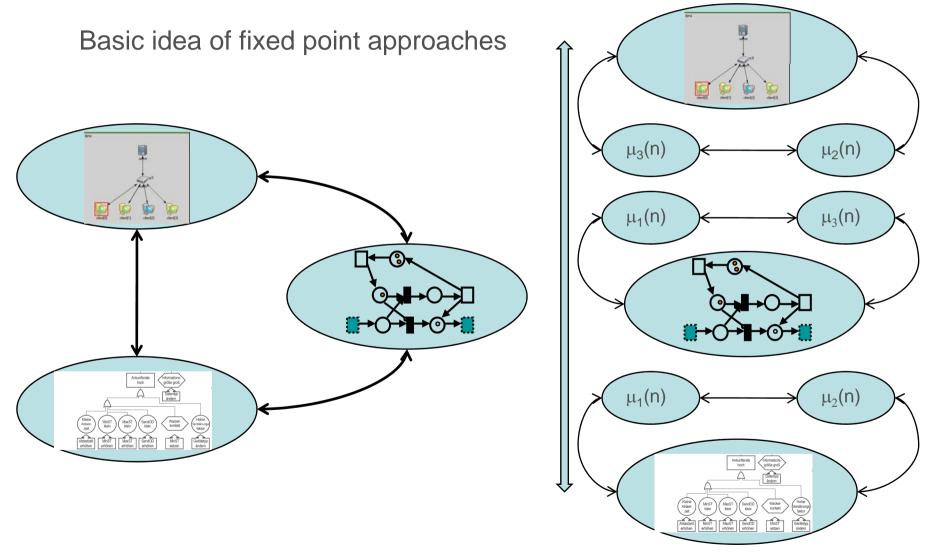
Each submatrix as a sum of tensor products (appropriate data structures are available)

Where are we?

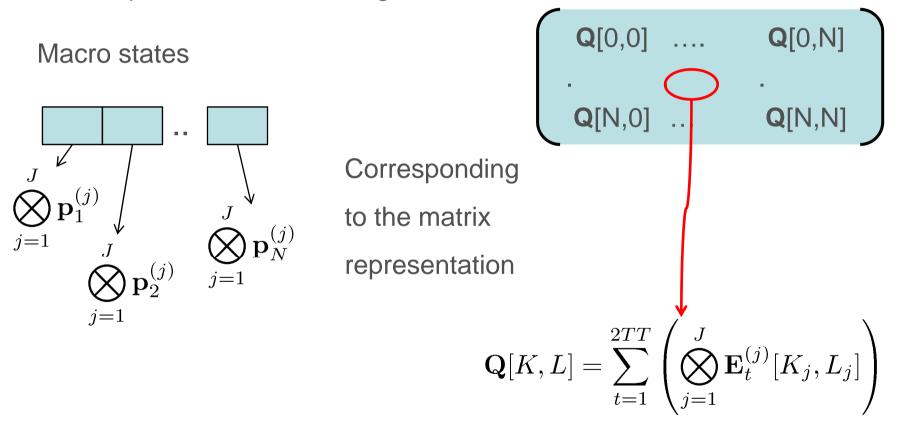
- Compact representations of huge state spaces (10³⁰ and beyond) and transition relation
- Efficient generation of state space and transition relation
- Often efficient analysis of functional properties
- But what about non-functional properties?
 (dependability, performance, safety(!?), ...)

- Solution of the transient or stationary probability distribution requires storage of $O(\Pi n_i)$ states
 - > Can be done for 10^7 - 10^8 states but not beyond
 - Alternative compact storage schemes for probability vectors (e.g, MDDs, PDGs) failed





Vector representation in the algorithms



- Can be used for stationary and transient (!) analysis
- Effort for J components with n_j states and d_j non-zeros per row Memory $O(\Sigma d_j n_j)$ versus $O(\Pi d_j n_j)$ for exact methods Time:
 - Transient analysis:
 - O(αtΣd_jn_j) versus
 O(αtΠd_jn_j)
 where t is the time bound
 and α is a bound for the
 transition rates

Stationary analysis:

> $O(it_1 \Sigma d_j n_j)$ versus $O(it_2 \Pi d_j n_j)$ where usually $it_1 > it_2$ but $O(it_1) = O(it_2)$

But this is an approximate method! What about the error?

- > Usually errors are small (often below 1%) but this not a guarantee!
- Two possibilities to reduce and control the error
 - > Partial expansion of the vector
 - > Residual computation and multiple Kronecker products

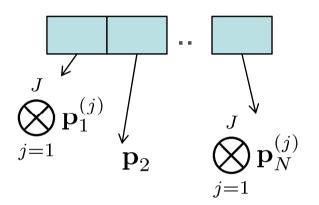
Expand parts of the vector

technische universität

- Easy to integrate in a solution
 - approaches (stationary and transient)
 - Effort grows but usually remains less
 - than 1/N of the exact computation

Which parts should be expanded and how to use the results?

- Use parts where the probability and/or the reward is high
- Compare solutions resulting from different expansions



dortmund

Computation of residuals (for stationary analysis)

• Let π be the exact solution and **q** be an approximation, then

 $\pi \mathbf{Q} = \mathbf{0}$ and $\mathbf{q} \mathbf{Q} = \mathbf{r}$

 $||\mathbf{r}||_2$ is an indicator for the error

The residual is computed with one vector matrix product

vector + sparse matrix $O(\Pi d_i n_i)$

vector + Kronecker matrix $O(\Sigma d_i \Pi n_i)$ (with larger constants)

Kronecker vector + Kronecker matrix $O(\Sigma d_i n_i)$

Can be done!

How to improve solutions?

• Reduce the residual $\min_{\mathbf{p}^{(1)},...,\mathbf{p}^{(J)}} \left(\left\| \bigotimes_{j=1}^{J} \mathbf{p}^{(j)} \mathbf{Q} \right\|_{2} \right)$ non-linear optimization problem

approximation algorithm solves iteratively quadratic problems

Extension by using more than one vector per component

$$\min_{\mathbf{p}^{(1),1},\ldots,\mathbf{p}^{(J),K}} \left(\left\| \sum_{k=1}^{K} \left(\bigotimes_{j=1}^{J} \mathbf{p}^{(j),k} \right) \mathbf{Q} \right\|_{2} \right)$$

- Computation of minimum is still a challenge but first results are promising
- E.g. tandem queuing system
- 3.2 million states
- Fixed point approach solves systems of size 20 errors: mean population < 1%, single population < 5%, joint distribution factor of 7, residual 2.51e-4
- Product form with K=50 solves quadr. opt. problem of size 1000 errors for all results with an error of less than 1% residual 6.62e-6, overall 5000 elements to store!