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Adaptive Systems
Dynamically changing system behavior.

Motivation:
Short term ⇒ react to changes in the environment: May be caused by failures, intrusions,

spam/virus/worm attacks, mobility, changes in hardware resources, changes in user
requirements, etc.

Long term ⇒ system evolution: updating hardware, software, configuration over time

Examples:
– Networking: Changing video

frame rate in response to
congestion.

– Mobile systems: Implementing
location-specific services.

– Fault tolerance: Reconfiguring
software to deal with a host
failure.

– Survivability: To impose
addition barriers to counteract
an intruder.

Adaptation Control System
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Challenges

Fundamental issue ⇒ each phase of the feedback control
loop is complex in large networked systems.

Monitoring
– Collecting and correlating data across multiple hosts.
– Knowing what to monitor and when.
– Minimizing intrusiveness of monitoring mechanisms.

Analyze and decide ⇒ policies
– Determining actual system state from monitoring results.
– Developing policies ⇒ automatic generation
• Predicting impact of changes ⇒ system tomography

– Expressing policies.
– Implementing policies efficiently.
– Making decisions in a distributed system.
– Avoiding oscillations.
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Adapt ⇒ mechanisms
– Changing values, software modules, resource allocations, etc.

– Decoupling control from regular functionality.

– Actually effecting change, especially in software where no source
code is available or that cannot be changed directly.

– Maintaining correctness across and during adaptations.
• Inter-component coordination on a single host
• Inter-host coordination for distributed services

⇒ Cholla adaptation architecture

All must be done in a
running system and an

environment that continues
to change.
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Performance 
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Generating Adaptation Policies
     (G. Jung, C. Pu)

Problem: Deciding how to continuously configure systems to
adapt to changing conditions.

Technologies:
– Stochastic models, reinforcement learning, control theory

Typical approach:
– Construct a parametric model of the target system
– Fix some parameters through experiments or learning
– Devise strategy for optimizing rest of parameters using runtime state as input
– Implement strategy as an online controller
– Use output of controller to configure system

Disadvantages: lack transparency and predictability,
performance can be an issue, etc.

 Have developed a hybrid approach:
– Offline optimization and model solution to generate optimal configurations.
– Use generated rule sets at runtime (policies).
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Application Context: Dynamic Resource Allocation

apps apps apps
Costs of power, air conditioning, data center
space, operations, low utilization, multi
processor and multi core processors +
virtualization technology:
⇒ server consolidation.

ap
ps

ap
ps

ap
ps

How to manage
resource pool

and
applications?

Promise: Cost reduction, handling of flash
crowds, failures.
Challenge: unpredictable workload.

w
orkload

ap
ps

⇒More sophisticated management system and complex
adaptation policies required.

⇒Focus on multi-tier enterprise applications: web server +
application server + backend database
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Runtime Resource Management

Shared Resource Pool
with Applications

Decide

Monitor.Act/Adapt

Monitor:

• resource utilization,

• response times,

• failure alarms.

Actions:

• Start/stop processes (e.g., adjust
replication degree of a component).

• Migrate processes

• Adjust CPU allocation (e.g., virtual
machine technology).
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Current approach

Shared Resource Pool
with Applications

Decide

Monitor
Act/Adapt

Significant and obvious limitations of
manual approach

• Slow reaction time (10s of minutes).

• Difficult to consider all factors in a
complex system.

• Human errors.

• Cost of 24/7 operations.

Solution: Replace operator with a
rule-based management system.

Challenge: Developing rules.

Use stochastic models as the basic
technology.



Page 11

How to use models (1/2)

Shared Resource Pool
with Applications

Monitor
Act/Adapt

Model inline(MIL):

• Model(s) evaluated at runtime given
current system workload as input.

• The rewards for alternative
configurations can be calculated to
determine a better configuration.

Decide
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How to use models (2/2)

Shared Resource Pool
with Applications

Monitor
Act/Adapt

Model offline(MOL):

• Model(s) evaluated before system
deployment using different workloads as
inputs.

• Optimized configuration determined for
each different workload mix.

• Adaptation rules generated based on
model outputs.

Decide

rules
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MOL in action: Our Approach

Formal problem statement, then discuss steps
bottom up.

Application 2
Application 1

modeling

Model solver
(LQNS)

Optimizer

Rule
constructor

workload optimal feasible
configuration

response time,
utilization

workload,
configuration

rules

request rate, 
etc. actions
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Formal problem statement (1/2)
Given:

• A set of computing resources R

• A set of applications A:

• each consists of a set of components/tiers

• each component has a set of possible replication degrees

• may support multiple transaction types.

• For each transaction type,

• a transaction graph describes how the transaction uses application
components

• each component’s service time

• For each application, an SLA that, for each transaction type,
specifies the desired (mean) response time and the
reward/penalty for meeting/missing this time
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Example: RuBIS

RuBIS: a J2EE-based auction system.

Clients Apache

Tomcat

Tomcat
MySQL

Client MySQLTomcatApache1 1 1241

AboutMe Transaction

Client Apache1

Home Transaction

26 different transaction types with very different behaviors.
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Formal problem statement (2/2)

Measured at runtime:
• Each application’s workload for each transaction type

Goal:
• Configure the set of applications A on the resources R so that

the reward with current workload is maximized

• Configuration:

1. Degree of replication for each component (of each app)

2. Virtual machine parameters for a VM running the component
(CPU fraction)

3. Placement of VMs on the physical machines R
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Example: RuBIS

Apache Tomcat MySQLApplication components:

Logical configuration:
Apache

Tomcat

Apache
Tomcat MySQL

Tomcat
.15

.32

Physical configuration:

Hardware
Hypervisor

Hardware
Hypervisor

Hardware
Hypervisor

.16
.29

.70

.39
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Application Modeling

Regular queuing networks do not capture the
complexity of layered, multi-tier software
systems

• Multiple request classes and request fractions between
classes

• Synchronous calls among servers

• Multiple interactions between servers

Layered queuing models
• Allow simultaneous resource possession

• Allow distinguishing between software (threads) and
hardware bottlenecks

Application 2Application 1

modeling
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Layered Queuing Model (LQNS)

Software component replica = task
• number of servers per task = max number of threads in the component

• one entry for each transaction type

Task allocated to a virtual processor. Service time scaled by the
CPU fraction of the virtual processor.

Do not model memory, disk, or network contention.

Legend
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Layered Queuing Model (LQNS) - details
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Model validation (1/3)

Model predicts response time at different request rates  
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Model validation (2/3)

Model predicts CPU utilization at different tiers at different
request rates.
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Model validation (3/3)

Model predicts response time at different CPU allocations.
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Optimization (1/2)

Key techniques:
• Decouple logical configuration from physical component placement.

• Start from optimal configuration, search paths that reduce resource utilization while
minimally reducing utility.

Observations:
• Utility decreases when response time increases.

• Response time increases when number of replicas is reduced.

• Response time increases when CPU fraction is reduced.

For a given workload, find the configuration
with the maximum utility.

Huge parameter space to explore, NP-
Complete problem.

Model 
solver

Optimizer
response time,

utilization
workload,

configuration
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Optimization (2/2)
Optimal configuration:

• Each component of each application has the
maximum number of replicas, each with 100% of a
CPU of their own.

• Use model solver to get actual resource utilizations ρ
and the response times (for calculating utility U).

Algorithm:
1. Use bin-packing algorithm to find out if the

utilizations ρ can be fitted in the actual resources R.

2. If not, evaluate possible alternatives for reducing
utilization:
– Reduce number of replicas for some component
– Reduce CPU fraction for some virtual machine by

5%
3. Determine the actual utilizations and utility for the

different options.

4. Choose the one that maximizes:

5. Repeat until configuration found
UU oldnew

kji kji
oldnew

!

!" "
,, ,,

##



Page 26

Optimality of the generated policies
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Rule Set Construction

Constructor:
– Randomly generates a set of workloads WS based on SLA for each

application.

– Invokes optimizer to find optimal configuration c for each w ∈ WS.

– Gives (w, c) pairs (raw rule set); still need interpolation for
workloads ∉ WS.

– Use decision tree learner in the Weka machine learning toolkit to
generate decision tree.

– Linearize into nested “if-then-else” rule set.

Optimizer

Rule
constructor

workload optimal feasible
configuration

rules
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Rule set size

The size of the rule set increases when the number of
training set data points increases.
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Utility error

The utility error decreases, and then stabilizes, with number
of training set data points.
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Summary and Open Questions

Summary:
• Dynamic resource management crucial for server consolidation

• Development of adaptation policy rules  a challenging problem

• Propose a hybrid approach based on offline modeling for rule generation

Open questions:
• Can the set of rules be simplified with minimal loss of accuracy?

• How do rules compare with human generated rules?

• Given the current configuration, how to get to the optimized configuration (at
minimum cost).
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