
© 2008 AT&T Intellectual Property. All rights reserved. AT&T
and the AT&T logo are trademarks of AT&T Intellectual Property.

Adaptive Distributed Systems
Challenges and Solutions

Rick Schlichting
Executive Director, Software Systems Research
AT&T Labs-Research

Page 2

In collaboration with:
• Matti Hiltunen, Kaustubh Joshi (AT&T)

• Gueyoung Jung, Calton Pu (Georgia Tech)

Page 3

Adaptive Systems
Dynamically changing system behavior.

Motivation:
Short term ⇒ react to changes in the environment: May be caused by failures, intrusions,

spam/virus/worm attacks, mobility, changes in hardware resources, changes in user
requirements, etc.

Long term ⇒ system evolution: updating hardware, software, configuration over time

Examples:
– Networking: Changing video

frame rate in response to
congestion.

– Mobile systems: Implementing
location-specific services.

– Fault tolerance: Reconfiguring
software to deal with a host
failure.

– Survivability: To impose
addition barriers to counteract
an intruder.

Adaptation Control System

Monitor 1

. . .
Monitor n

Action 1
. . .

Action m
Alerts

Monitoring
info

Commands

Training

Page 4

Challenges

Fundamental issue ⇒ each phase of the feedback control
loop is complex in large networked systems.

Monitoring
– Collecting and correlating data across multiple hosts.
– Knowing what to monitor and when.
– Minimizing intrusiveness of monitoring mechanisms.

Analyze and decide ⇒ policies
– Determining actual system state from monitoring results.
– Developing policies ⇒ automatic generation
• Predicting impact of changes ⇒ system tomography

– Expressing policies.
– Implementing policies efficiently.
– Making decisions in a distributed system.
– Avoiding oscillations.

Page 5

Adapt ⇒ mechanisms
– Changing values, software modules, resource allocations, etc.

– Decoupling control from regular functionality.

– Actually effecting change, especially in software where no source
code is available or that cannot be changed directly.

– Maintaining correctness across and during adaptations.
• Inter-component coordination on a single host
• Inter-host coordination for distributed services

⇒ Cholla adaptation architecture

All must be done in a
running system and an

environment that continues
to change.

Page 6

Performance
Adaptation

Distributed System

Failures
Workload changes

Resource changes

Automatic
Recovery

System
Tomography

Cholla Adaptation Architecture


Policies 

Page 7

Generating Adaptation Policies
 (G. Jung, C. Pu)

Problem: Deciding how to continuously configure systems to
adapt to changing conditions.

Technologies:
– Stochastic models, reinforcement learning, control theory

Typical approach:
– Construct a parametric model of the target system
– Fix some parameters through experiments or learning
– Devise strategy for optimizing rest of parameters using runtime state as input
– Implement strategy as an online controller
– Use output of controller to configure system

Disadvantages: lack transparency and predictability,
performance can be an issue, etc.

 Have developed a hybrid approach:
– Offline optimization and model solution to generate optimal configurations.
– Use generated rule sets at runtime (policies).

Page 8

Application Context: Dynamic Resource Allocation

apps apps apps
Costs of power, air conditioning, data center
space, operations, low utilization, multi
processor and multi core processors +
virtualization technology:
⇒ server consolidation.

ap
ps

ap
ps

ap
ps

How to manage
resource pool

and
applications?

Promise: Cost reduction, handling of flash
crowds, failures.
Challenge: unpredictable workload.

w
orkload

ap
ps

⇒More sophisticated management system and complex
adaptation policies required.

⇒Focus on multi-tier enterprise applications: web server +
application server + backend database

Page 9

Runtime Resource Management

Shared Resource Pool
with Applications

Decide

Monitor.Act/Adapt

Monitor:

• resource utilization,

• response times,

• failure alarms.

Actions:

• Start/stop processes (e.g., adjust
replication degree of a component).

• Migrate processes

• Adjust CPU allocation (e.g., virtual
machine technology).

Page 10

Current approach

Shared Resource Pool
with Applications

Decide

Monitor
Act/Adapt

Significant and obvious limitations of
manual approach

• Slow reaction time (10s of minutes).

• Difficult to consider all factors in a
complex system.

• Human errors.

• Cost of 24/7 operations.

Solution: Replace operator with a
rule-based management system.

Challenge: Developing rules.

Use stochastic models as the basic
technology.

Page 11

How to use models (1/2)

Shared Resource Pool
with Applications

Monitor
Act/Adapt

Model inline(MIL):

• Model(s) evaluated at runtime given
current system workload as input.

• The rewards for alternative
configurations can be calculated to
determine a better configuration.

Decide

Page 12

How to use models (2/2)

Shared Resource Pool
with Applications

Monitor
Act/Adapt

Model offline(MOL):

• Model(s) evaluated before system
deployment using different workloads as
inputs.

• Optimized configuration determined for
each different workload mix.

• Adaptation rules generated based on
model outputs.

Decide

rules

Page 13

MOL in action: Our Approach

Formal problem statement, then discuss steps
bottom up.

Application 2
Application 1

modeling

Model solver
(LQNS)

Optimizer

Rule
constructor

workload optimal feasible
configuration

response time,
utilization

workload,
configuration

rules

request rate,
etc. actions

Page 14

Formal problem statement (1/2)
Given:

• A set of computing resources R

• A set of applications A:

• each consists of a set of components/tiers

• each component has a set of possible replication degrees

• may support multiple transaction types.

• For each transaction type,

• a transaction graph describes how the transaction uses application
components

• each component’s service time

• For each application, an SLA that, for each transaction type,
specifies the desired (mean) response time and the
reward/penalty for meeting/missing this time

Page 15

Example: RuBIS

RuBIS: a J2EE-based auction system.

Clients Apache

Tomcat

Tomcat
MySQL

Client MySQLTomcatApache1 1 1241

AboutMe Transaction

Client Apache1

Home Transaction

26 different transaction types with very different behaviors.

Page 16

Formal problem statement (2/2)

Measured at runtime:
• Each application’s workload for each transaction type

Goal:
• Configure the set of applications A on the resources R so that

the reward with current workload is maximized

• Configuration:

1. Degree of replication for each component (of each app)

2. Virtual machine parameters for a VM running the component
(CPU fraction)

3. Placement of VMs on the physical machines R

Page 17

Example: RuBIS

Apache Tomcat MySQLApplication components:

Logical configuration:
Apache

Tomcat

Apache
Tomcat MySQL

Tomcat
.15

.32

Physical configuration:

Hardware
Hypervisor

Hardware
Hypervisor

Hardware
Hypervisor

.16
.29

.70

.39

Page 18

Application Modeling

Regular queuing networks do not capture the
complexity of layered, multi-tier software
systems

• Multiple request classes and request fractions between
classes

• Synchronous calls among servers

• Multiple interactions between servers

Layered queuing models
• Allow simultaneous resource possession

• Allow distinguishing between software (threads) and
hardware bottlenecks

Application 2Application 1

modeling

Page 19

Layered Queuing Model (LQNS)

Software component replica = task
• number of servers per task = max number of threads in the component

• one entry for each transaction type

Task allocated to a virtual processor. Service time scaled by the
CPU fraction of the virtual processor.

Do not model memory, disk, or network contention.

Legend

Function Call

Instrumentation
Resource Use

Apache Server 0.5

Tomcat Server

MySQL ServerTomcat Server

Net

CPU

VMM

Apache

DiskDisk
s disk

sapache

sint

1 10.5

1

ndisk

ntomcat

Net

CPU

VMM

Tomcat

DiskDisk
s disk

stomcat

sint

1

1

ndisk

ntomcat

Net

CPU

VMM

MySQL

DiskDisk
s disk

stomcat

sint

1

1

ndisk

1Client

LD _PRELOAD Instrumentation

Servlet .jar Instrumentation

Network Ping Measurement

Page 20

Layered Queuing Model (LQNS) - details

AboutMe

Home

Apache Server

Client

AboutMe

Home

Net

AboutMe

Home

Delay

1

1

VMM

AboutMeIn

HomeIn

CPU

PS

1

1

0.5

Delay

AboutMeOut

HomeOut

Apache

AboutMe

Home

AboutMe .ntomcat

Home.ntomcat

1 1

0.5
0.5
0.5

Home .ndiskAboutMe .ndisk

Page 21

Model validation (1/3)

Model predicts response time at different request rates

Page 22

Model validation (2/3)

Model predicts CPU utilization at different tiers at different
request rates.

Page 23

Model validation (3/3)

Model predicts response time at different CPU allocations.

Page 24

Optimization (1/2)

Key techniques:
• Decouple logical configuration from physical component placement.

• Start from optimal configuration, search paths that reduce resource utilization while
minimally reducing utility.

Observations:
• Utility decreases when response time increases.

• Response time increases when number of replicas is reduced.

• Response time increases when CPU fraction is reduced.

For a given workload, find the configuration
with the maximum utility.

Huge parameter space to explore, NP-
Complete problem.

Model
solver

Optimizer
response time,

utilization
workload,

configuration

Page 25

Optimization (2/2)
Optimal configuration:

• Each component of each application has the
maximum number of replicas, each with 100% of a
CPU of their own.

• Use model solver to get actual resource utilizations ρ
and the response times (for calculating utility U).

Algorithm:
1. Use bin-packing algorithm to find out if the

utilizations ρ can be fitted in the actual resources R.

2. If not, evaluate possible alternatives for reducing
utilization:
– Reduce number of replicas for some component
– Reduce CPU fraction for some virtual machine by

5%
3. Determine the actual utilizations and utility for the

different options.

4. Choose the one that maximizes:

5. Repeat until configuration found
UU oldnew

kji kji
oldnew

!

!" "
,, ,,

##

Page 26

Optimality of the generated policies

Page 27

Rule Set Construction

Constructor:
– Randomly generates a set of workloads WS based on SLA for each

application.

– Invokes optimizer to find optimal configuration c for each w ∈ WS.

– Gives (w, c) pairs (raw rule set); still need interpolation for
workloads ∉ WS.

– Use decision tree learner in the Weka machine learning toolkit to
generate decision tree.

– Linearize into nested “if-then-else” rule set.

Optimizer

Rule
constructor

workload optimal feasible
configuration

rules

Page 28

Rule set size

The size of the rule set increases when the number of
training set data points increases.

Page 29

Utility error

The utility error decreases, and then stabilizes, with number
of training set data points.

Page 30

Summary and Open Questions

Summary:
• Dynamic resource management crucial for server consolidation

• Development of adaptation policy rules a challenging problem

• Propose a hybrid approach based on offline modeling for rule generation

Open questions:
• Can the set of rules be simplified with minimal loss of accuracy?

• How do rules compare with human generated rules?

• Given the current configuration, how to get to the optimized configuration (at
minimum cost).

© 2008 AT&T Intellectual Property. All rights reserved. AT&T
and the AT&T logo are trademarks of AT&T Intellectual Property.

Thank you!

