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Embedded Systems today:
simple, integrated
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Networked embedded
systems: short-range, static

 Take a car or robot
 Local control network
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Systems of embedded
systems
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Challenge
 The design of correct, trustworthy real-time systems

of embedded systems is a grand challenge

 Need to deal with:
 complexity, modularity, autonomy, dynamics of

configurations, heterogeneity of compositions
 But also

 pervasiveness of devices, ubiquity of computations, lack of
perceived global state, unreliability of communication,
uncertainty of timeliness (delays), insecurity
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Systems research topics under a
distributed systems context:

 Reference architectures for
pervasive/ubiquitous/embedded systems

 Event-based middleware
 Innovative paradigms featuring adaptation,

reconciling uncertainty with predictability
 Adequate programming models to exploit the

existing architectural support
 System evaluation
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Summary

 Adapting to environment changes

 Improved control with hybrid system
architecture
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Adapting to environment changes
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Problem Motivation
 Design and deployment of distributed

applications is faced with the confluence of
antagonistic aims: uncertainty vs. predictability

 Current and future large, massive-scale
pervasive and/or ubiquitous computing
systems will amplify this

 Key lies with a changing notion of service
guarantees, not with their absence
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Dealing with uncertainty

 We defined a generic approach to reconcile
uncertainty with the need for predictability:

         Dependable adaptation

 Make the application behave [safely, timely, securely,
etc] in the measure of what can be expected from the
environment

 The objective is to ensure coverage stability
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Dependable adaptation
 The chosen bound should be secured with a stable probability
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Implementation

 Pessimistic approach (weak model of the
environment):

 The environment is probabilistic, but we cannot know
or identify a specific probabilistic distribution

 Hence, based on estimated mean and variance, we
use a pessimistic formulae to calculate an upper
bound for the probability of a bound, t, being violated
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Assumptions
 Characterizing delays

 Possible distributions (e.g., network behavior) include:
Weibull, shifted gamma, exponential, truncated normal

 Distributions may change over time
 Assume interleaved probabilistic behavior

 Determining actual distributions and changes
 Several approaches, including: time-exponentially

weighted moving histograms, Kolmogorov-Smirnov
test or Mann-Kendall test

 Possibly use several simultaneously
 Assume recognition abilities
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Assumptions

 Applying recognition methods in practice

 Is the recognition process fast enough for the
dynamics of the environment?

 Assume sufficient stability

 Is there enough and statistically related data to allow
the recognition of a probabilistic state?

 Assume sufficient activity
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How does the environment
behaves?
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How does it works?

 We need Phase Detection Mechanisms that:
 Detect stable phases
 For the detected stable probabilistic distribution

estimate parameters that characterize this pdf
 Several phase detection mechanisms can be

run in parallel
 Then we need Bound Estimators for each

distribution to derive the bound that secures
the required coverage
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How to provide ‘safe’ time
bounds?
 During stable periods, use optimistic estimators for

determining time bounds, for example:
    Exponential

            Pareto

 During transitions, use a conservative, but safe,
estimator (an mentioned before)
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The complete framework
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Example for exponential
distribution
 Stable phase detected when                       , with τ

being a tolerance bound
 From statistics, we know that for an exponential

distribution, a 100(1-α)% confidence interval of E(D) is

where h is the sample size

 If         is inside the confidence interval, then stability is
detected and the upper bound of the interval is used
for
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Pessimistic vs
adaptive approach (Exponential)
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Exponential variation
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Pessimistic vs
adaptive approach (Random)
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Using real traces
 Trace set from Umass repository

(http://traces.cs.umass.edu/index.php/Network/Network)

 UPRM Wireless Traces
 A collection of wireless traces from the University of

Puerto Rico. Contains wireless signal strength
measurements for Dell and Thinkpad laptops. Tests
were performed over distances of 500 feet and one
mile.

 Trace files:
 We extract RTT values from tcpdump files using

tcptrace utility.
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Aggressive selection logic
 Kolmogorov-Smirnov test
 If more than one distribution is detected, considers

the distribution which presents the lowest bound

Total points: 7307
Exponential observation: 0
Shifted Exponential
observation: 10
Pareto observation: 343
Weibull observation: 5932
Transient observation: 1022

Timing faults adaptative: 371
Adaptative bounds average:
54.50328473389455

Timing faults conservative: 5
Conservative bounds
average: 83.66266612760802

COVERAGE WAS NOT SATISFIED (98%), we should have at most 146 faults
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Conservative selection logic
 Anderson-Darling test
 If more than one distribution is detected, considers

the distribution which presents the lowest bound

Total points: 7307
Exponential observation: 0
Shifted Exponential
observation: 4508
Pareto observation: 295
Weibull observation: 1108
Transient observation: 1396

Timing faults adaptative: 106
Adaptative average:
63.252117644247726

Timing faults conservative: 5
Conservative average:
83.66266612760802

COVERAGE WAS SATISFIED (98%), we should have at most 146 faults
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Improving real-time control using
a hybrid system architecture
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Platooning scenario

 A platoon is composed of cars that:
 Communicate with each other (ad-hoc network)
 Receive GPS coordinates from satellites
 Have proximity sensors

27

SensorSensor Sensor

GPS
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Requirements

 The fundamental requirements are:
 Safety-critical: ∆min to the front car
 Non safety-critical: ∆max to the car behind
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System architecture
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Platooning dataflow

 With the local wormhole: collecting information from car sensors
and GPS and also sending control information to car actuators

 With peers (other cars): exchange of context information
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Decision algorithm
 Communication with other cars

 task starts by collecting data, calculates a new speed for the car and
sends its value to the neighbors (car B & car F)
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Decision algorithm

 Communication with the wormhole
 task starts by collecting data from the wormhole, calculates a

new speed for the car and sends the new speed value to the
TTFD service

Decision making algorithm

begin algorithm 

iteration i

Platooning 

application

Communication 

with wormhole

begin algorithm 

iteration i+1

TTFDWormhole 
services

GPS

Min Mout

deadline for 

iteration i

timely set 

speed 

command

deadline for 

iteration i+1



53rd IFIP WG 10.4 Meeting,
23 February 2008

33

Decision algorithm

 Normalize all values to next iteration deadline
 Use pessimistic assumptions about car behaviors

(e.g. it stop right after sending its position)

iteration i iteration i+1 iteration i+2 iteration i+3
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Timing Failure Handling
 If the payload response is delayed, the TTFD service

detects the fault when the deadline is reached and a
new speed value was not received.

 The TTFD service will immediately activate the safety
distance control component of the car
infrastructure…

 ... and, the car will become controlled by a more
pessimistic, but safe, control algorithm.

 It is ensured that fail over will be done on time to secure
safety (enough distance to break the car, if necessary)!
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To conclude,
lets see some cars moving...
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Thank you!

Visit us at
http://www.navigators.di.fc.ul.pt


