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Part 1

INITIAL MO TIVATION
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Autonomous systems

e An autonomous system is characterized by the ability
to automatically adapt its behavior according to mod-
ifications of its environment without requiring external
Intervention

e This falls in the well-known self-* properties

* Self-healing, self-stabilization, etc.

e Numerous examples:
* Peer-to-Peer systems, Wireless networks

* Sensor-based systems deployed on a large area

*x Etc.
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Self-structuring

e Self-structuring represents the abilty of a system to
let emerge a specific structure from scratch without
requiring external intervention

o A key feature of autonomy

e In sensor networks: self-structuring represents an impor-
tant requirement for operations such as forwarding, load
pbalancing, leader election energy consumption manage-
ment, etc.

e Example: Partitioning into several zones for monitor-
ing purposes, or selection of sensors to ensure specific
functions (and save energy)
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On the initial knowledge

e Difficulty of self-structuring depends strongly on the
amount of knowledge of the network initially known by
each entity

e Types of knowledge:

* External knowledge: provided by external devices
(e.g., GPS), or global assumptions known by every

entity (e.g., size of the network, topology)

*x Intrinsic knowledge: gained by computation executed
by each entity

* Similar to external clock synchronization vs internal clock synchronization

* T he more external knowledge is required, the less
robust (autonomous) a system is

—
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Network organization: Geometric structuring

e A network organization is based on an underlying struc-
ture that is geographical or functional

e Geographical example: sector-shaped clustering

e Functional example: awake and sleep entities
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Example

1: North, South, and Equator zones
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Example 2: Wake up/Sleep entities
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Part 11

A VIRTUAL COORDINATE SYSTEM
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Virtual d-dimensional space

e [ he aim of a coordinate system is to provide locations
with names (naming system) satisfying some properties

o Let d be the dimension of the coordinate system
e [ he border of the area is decomposed into d segments

e [ he virtual coordinates of an entity = is a d-uple of

integers |(x1,xo,...,x4)|such that x; is the projection of
X on the ith dimension

e More specifically, x; is the smallest number of hops (pro-
jection) from the node x to the border segment i

—
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Virtual coordinates: illustration

Segment for

) A coordinate 2
Segment for

coordinate 1

Segment for coordinate 3

P
— IRISA

From Anarchy to Geometric Structuring

13



Underlying rationale

e Not directly related to ‘real geographic coordinates”

e Connectivity-based approach|: the coordinates reflect

only the underlying connectivity

e Can adapt to obstacles (mountains, underground, etc.)
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Related work

GPS-based
Landmark-based
Anchor-based
Hybrid
Connectivity-based

High levelof
externat’knowledge

(1) Satellite—based methods

' (2) Measurement-based methods
'(3) Rao et al. method, in [17]

' (4) Benbadis et al. method,/in [9]

' Low level
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Network model: Entities (sensors)

e Each entity has a unique id

e Initial knowledge:

* Each entity knows that all ids are different

* No entity knows the actual nb of entities, the struc-
ture of the network, the density distribution, etc.

e EXxcept for their ids, the entities are clone of each other:
they are all “equal”

e Each entity has a local clock whose drift is bounded

e No GPS, landmarks, “initially specific’ entities, etc.
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Network model: Communication

e NO node has geographical topology information
e ecach node has a communication range R

° Reachability depends not only on geographical dis-
tances, but also on natural obstacles (e.g., valleys sep-

arated by mountains)

Unit Disk Graph with obstacles

e [ he entities within the range of entity ¢ that are directly
reachable define the set com_neighbors;

e Global assumption: the density of entities is such that
the network is connected

e [ here is an upper bound on message transfer delay

—
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From anarchy to virtual coordinates

The VC algorithm works in four phases

e Phase #1: Detection of initiators
e Phase #2: Border score definition
e Phase #3: Border-belt construction

e Phase #4: Coordinate computation

Anonymity property: The code executed by entity x with
id ID is the same as the code entity y with id ID

P
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Phase #1: Detection of initiators

e An initiator is a
“locally maximum” entity from a density point of view

e ¢ IS an initiator:
V j € com_neigbhors; . |com_neigbhors;| > |com_neigbhors|

e [ he initiators are used to detect border
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Phase #2: Border score definition

e Every 1+ computes its distance wrt each initiator 3
dist(i,j) = min{dist(i,£) | £ € com_neigbhors;} + 1

e [ he border score of an entity ¢+ “measures” its average
distance to an initiator: score; =  dist(4,j)

e An entity can compute its score and the scores of its
com_neigbhors

e As initiators define ‘“centers’” of the system, entities on
the border have higher score than the entities that are
not on the border

e This allows discovering entities that are (for sure) on
the border

—
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Phase #3: Border-belt construction

e Use of a probe forward-or-discard mechanism (this is
the only place where entity ids are used)

Border width =
1hop
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Phase #4: virtual coordinate determination

e At the end of Phase #3, each node on the border knows
the number of the segment it belongs to

e On each segment h, 1 < h < d, each border entity
broadcasts a message that is forwarded from entity to
entity, thereby allowing each entity to determine the
value of its h coordinate

—
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Part III

GEOMETRIC STRUCTU

RING
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Using VC for network structuring

e Geometric/Functional structuring
e Aim: associate a partition number p with each entity

e Use a mathematical function to define a structure

* Let an entity ¢, with coordinate ¢;
x The function f()

f: K — {0O,...,p},
flc) — pi
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Geometric structuring (1.1)

e North, South and Equator partitioning
oed=2,p=3
e The function f()

f:NxN — {1,2,3}
1 when x1 > x>
f(x1,220) — 2 when x1 = x>
3 when x1 < x»o

—
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Geometric structuring (1.2)
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Geometric structuring (2.1)

e Target partitioning
oed=1,p>0
e “Wave” waking up

e The function f()

f:N — N
f(z1) — =z
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Geometric structuring (2.2)
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Functional structuring (3.1)

e Vertical lines partitioning

e d=4, p=2 (value of the modulo)
e The function f()

f:N* — {0,1}

f(x1,22,23,74) — max(zp,z4) Mod 2.

e Horizontal lines partitioning

f:N* — {0,1}

f(CC]_,LUQ,ZC:g,ZCZL) — maX(iU]_,LU:g) mod 2.
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Functional structuring (3.2)
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Functional structuring

(4.1)

Network partitioning
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Functional structuring (4.2.1)

e FEvye-like partitioning

e d=4, p=>5 (value of the modulo)

e The function f()

f:N* — {0,1,2,3,4})

f(z1,20,23,24) —

0

A WN -

if

otherwise

eyelid
pupil

1718
eyelashes
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Functional structuring (4.2.2)

Where the predicates are

Condition Description
eyelid (xg =9 ANz <x20) V(o =9Az9 < x2)
pupil 1 = XTp = XT3 = X4
iris (|£Uo—$2| <2)\/(|a:1—:c3| < 2)
eyelashes | (xg < 12) A (x1 =20V o =23V X1 = T3)
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Functional structuring (5): with a hole at the center
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Functional structuring (6)
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Part 1V

WHAT IS A
VIRTUAL COORDINATE SYSTEM?
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Physical vs logical neighborhood

® |j € com neighbors; < ¢ can directly communicate with 3

e Cartesian coordinates (e.g., GPS) do not define a cor-
rect com_neigbhorhood relation (as they do not take
into consideration natural obstacles)

e A virtual coordinate system associates a point in a d-
dimensional (integer) space with each entity

e SO, a coordinate of an entity z is a d-uple (x1,...,x4)

° How?to characterize the “usefulness” of a given VC sys-
tem:
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What is a VC system??

Physical

Network

VC system

) coordinates

Notion of communcation neighbors

Virtual

Every x has a "name”

(331,...,$d)
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Reminder: how causality is captured

Distributed Virtual Clock system Logical

Run (events) ) timestamps

Every event x has a "name”

Notion of " physical passage of time”
(331, . .. ,a:d)
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Consistency of a virtual clock system

e Let — be the causality relation

e Observation: It is not because two events are close in
time that they are causally related

e Lamport (scalar) clock (dimension d = 1)

* Let a and b timestamped hy and hy
* Consistency: a — b = hqg < hy

e Vector clock (dimension d = n)

* Let a and b timestamped wvcqg and vy
* Consistency: a — b & veq < vey

e Plausible vector clocks, approximate vector clocks, etc.
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Properties required from a VC system (1)

Observation: It is not because two entities are close in
the physical space that they are communication-close (i.e.,

they are close from a communication point of view)

o Let VC be a virtual coordinate system

e Completeness: (no false negative)

If £ and y are com-neighbors, they are VC-neighbors

e Accuracy: (no false positive)

If £ and y are VC-neighbors, they are com-neighbors
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A more global view

Accuracy

Completeness/
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A solution?

e Let the virtual coordinate of an entity = be the pair
(IDg,{IDy | y € com _neigbhorsz})

e [ he size of the coordinates depends on the connection
degree (i.e., it is network dependent)

e [ his VC system is complete and accurate, but...

e It does not give “direct” information on the network, it
is too much “local” (no notion of distance)

e In general we are interested in a VC system:

x Whose size d is fixed a priori (i.e., network-independent)

x That gives (directly) “global” information
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Properties required from a VC system (2)

e Completeness and Accuracy are not sufficient

e [ he coordinates of the entities have to provide infor-
mation that is globally consistent wrt their respective
logical position

e T his is captured by the following validity property: if
two entities are communication-close (physical system),
they are ‘“close” in the VC system
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Properties required from a VC system (3)

e Completeness: (no false negative)
If x and y are com-neighbors, they are VC-neighbors
e Accuracy: (no false positive)

If £ and y are VC-neighbors, they are com-neighbors

e Validity: To be valid, the set of coordinates has to be
recognized by a distance function d(), i.e., a function

d() such that

% d(VCy, VCy) < d(VCa,VC,) + d(VC,, VCy)
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Returning to the proposed VC system

e x and y are |VC-neighbors if Aj<j<q (Jz; —y;| < 1)

e [ he VC system satisfies the completeness property

o d(VCUy,VCy) = max ({|x; — vil}1<i<q) | is an appropriate
distance function

¢ VO, and VC,: VC-neighbors & d(VC,, VC,) < 1

e Remark: Thereis no f() based only on ids that allows to
define a distance function (which means that ids cannot
be used to define a VC system)

e Other interesting properties can be revealed by the ex-
istence of other distance functions that recognize VC
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Results for Homogeneous Unit Disk Graph (UDG)

e Homogeneous sensor network: modeled by a UDG

e Computing VC for sensors becomes then finding a rep-
resentation of a given UDG

e It is NP-hard to determine a set of virtual coordinates
that satisfy all the UDG constraints for any given unit

disk graph [Breu and Kirpatrick, 1998]

e Even approximating the constraints to within a factor of
/3/2 is NP-hard [Khun, Moscibroda and Wattenhofer,

2004]

—
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Weakening the properties

e Accuracy: (no false positive)

If x and y are VC-neighbors, they are physical neighbors

e Idea: quantify the confidence on physical neighborhood
obtained from virtual coordinates

e cAccuracy: (the aim is to reduce false positive)

If  and y are VC-neighbors, they are com-neighbors
with probability 1 — ¢

—
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Other properties

e Let x and y with VC (z1,...,zn) and (y1,...,yn)

e Granularity: (weaken precision)

x and y: not com-neighbors = di: x; = y;

Two entities that are not com-neighbors cannot be con-
fused: they have different virtual coordinates

e Sharpness. x =y = di . x; * y;

Sharpness is stronger than granularity (no two entities
have the same VCs)

—
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Ratio of neighbors with same VC
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Part V

CONCLUSION

P
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What we have seen

e Context: autonomous self-structuring systems

e Design of an algorithm that assigns virtual coordinates

to entities
e VVery weak assumptions, very distributed and localized

e Geometric structuring

e Bypassing the routing pb: what is a VC system?
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