
1

Experimental Risk Assessment &
Component-based Software Certification

Regina MoraesRegina Moraes

53rd. IFIP WG 10.4 Meeting

2

Component-based Systems

What is the reason for use this approach?

Reuse

What is the cost if a faulty component
is retrieved from the repository?

Reuse is discouraged

3

Component-based Systems

What may happen if we use a well
tested component in a new system?

New Problems can appear

La
ck

 of
 de

tai
led

 in
for

mati
on

Di
ffe

re
nt

 o
pe

ra
tio

na
l c

on
dit

ion
s

In
te

ro
pe

ra
bil

ity
 p

ro
ble

m
s

Reused Component represents a Risk to the New System

4

Modern Software

Lots of Software components

Different sizes

Different levels of granularity

Software Products Certification is more crucial than ever

5

Certification

Key Precondition for CBSE to be
succesfully adopted in the large

Certified Components

6

Key Idea

Software Certification

To guarantee our products conform

to Users needs and

Well-defined Standards

Estimating the RISK of using a
COMPONENT in a larger system

Risk = prob(f) * cost(f)
[Rosenberg 2000]

7

ISO/IEC 9126
 Quality model that focuses on software product

 Internal Quality

 External Quality

 Quality in Use Quality in Use

productivity safetyeffectiveness satisfaction

Static
Properties

Outside view
of sw behavior

Using in a
particular task

and environment

8

Certification for Reuse – ISO/IEC 9126

Satisfaction
Satisfying the user in a specific

context of use

Effectiveness
Let users reach specified targets

with accuracy and completeness
in a specific context of use

Productivity
Let users employing appropriate

amount of resources in relation to
the effectiveness achieved
in a specific context of use

Safety
Present acceptable levels of risk

 of damage to individuals, businesses,
software, property or the environment

in a specific context of use

Quality in Use

9

ISO/IEC 14598

 Can be used in conjunction with ISO/IEC 9126

 Guides the planning and the execution of a evaluation
process of software quality product

 Fundamental characteristics expected in the software
products evaluation process:

 repeatability

 reproducibility

 impartiality

 objectivity

We got this all with our approach

10

Software Risk

Component 1
Custom

Component 3
COTS

Component 4
Custom

Exception
handler

Component 2
COTS

Injection of SW faults

How to estimate the risk on the use of components in my system?

Risk depends on the probability of the existence of residual fault in the component

Risk depends on the residual fault activation and the impact in the system if it occurs

11

Software Risk

Riskc = prob(fc) * cost(fc)

Statistical Model based on Logistic Regression

Software Fault Injection

prob(factivated)*c(failure)

Now we have a repeatable, reproducible and objective evaluation

12

Experimental Risk Assessment

 Evaluate cost(fc) experimentally through the injection of
software faults in the target component and measure its
impact on the system under analysis

 Estimate the prob(fc) by using complexity metrics of the
target component in a logistic regression analysis

 Use a real workload and operational profile during the fault
injection experiments

 Use a realistic distribution of faults to be injected

13

Residual Fault Estimation

 Based on logistic regression that is useful to address the
relationship between metrics and the fault-proneness of
components

 Logistic regression equation after a linear transformation

nn xxx
prob

prob
prob !!!" ++++=##

$

%
&&
'

(

)
= ..

1
ln)(logit 2211

metrics

regression
coefficient

Consider the weight of each sub-component related to the metric
that best represent the system characteristics

)/(*)()(!!= iiig MetricsMetricsfprobfprob

 Large Components

14

G-SWFIT
 Injection of Sw Faults based on a set of fault injection operators

resulted from a field study using G-SWFIT technique

Fault types Description % of total o bserved ODC classes

 MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm

 MFC Missing function call 8.64 % Algorithm

 MLAC Missing "AND EXPR" in expression used as branch condition 7.89 % Checking

 MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking

 MLPC Missing small and localized part of the algorithm 3.19 % Algorithm

 MVAE Missing variable assignment using an expression 3.00 % Assignment

 WLEC Wrong logical expression used as branch condition 3.00 % Checking

 WVAV Wrong value assigned to a value 2.44 % Assignment

 MVI Missing variable initialization 2.25 % Assignment

 MVAV Missing variable assignment using a value 2.25 % Assignment

 WAEP Wrong arithmetic expressi on used in parameter of function call 2.25 % Interface

 WPFV Wrong variable used in parameter of function call 1.50 % Interface

 Total faults coverage 50.69 %

15

Distribution of Fault Injected

 The distribution of the number of faults to inject in each
component is based on its fault proneness estimation
through logistic regression

 For small components with a small number of fault
locations, faults are distributed using the best approximation
of the distribution observed in field study

 For large components with a very large number of fault
locations, faults are internally distributed according to the
distribution observed in field study

16

Evaluation of the Cost

 After the injection of each fault, the cost is measured as
the impact observed in the whole system as a consequence
of the fault injected in the component

 The results measured by using fault injection include the
probability of fault activation and the consequence of a
failure, both measured through the impact observed

 cost(f) = prob(fa) * c(failure)

17

Failure Modes

 Hang – when the application is not able to terminate in the
pre-determined time

 Correct – there are no errors reported and the result is
correct

 Crash – the application terminates abruptly before the
workload is completed

 Wrong – the workload terminates but the results are not
correct

18

Ground

Control

Ground

Control

RTEMSRTEMS

DHSDHS

CDMS

RS232

PRPR PLPL…

Interface faults

at the API calls

(Xception)

x

x
Telemetry

Commands

LinuxLinux

Ground

Control

Ground
Control

RTEMSRTEMS or RTLinux

DHSDHS

CDMS

RS232

PRPR PLPL…

Software fault
Injection

(G-SWFIT)

LinuxLinux

The Case Study

Satellite Data Handling Software (ESA)

19

Results - Metrics & Coefficients

LoC C. Complexity Global
Application

Module

 < 100 100- 400 > 400 < 25 25-40 > 40 prob g(f)

RTEMS 1257 87,0% 11,0% 2,0% 80,0% 6,0% 14,0% 7,5%

RTLinux 2212 90, 0% 9,0% 1,0% 84,0% 6,0% 10,0% 6,5%

Fault Density Likelihood Estimation

20

Results - Failure Modes Obtained

RTLinux Results

50%

1%

25%

24%
Correct

Wrong

Crash

Hang

RTEMS Results

74%

5%

9%

12%

Correct

Wrong

Crash

Hang

Cost (or Impact) Estimation

21

Risk Evaluation and Certification
Risk Evaluation

Certification

(Riskc = prob(fc) * cost(fc))

22

Contributions & Conclusions
 This work presents a first proposal to certify a component-

based system using experimental risk assessment

 Our risk equation considers the fault probability, the
probability of fault activation, the probability of consequent
deviation in the component behavior and the consequence
of a failure

 Our approach assures a repeatable way of evaluating
risk and removes the dependence on the evaluators that
characterize classical risk evaluation approach

23

 To define threshold value for some product line to
improve certification of software system based on risk
assessment

 To improve the certification measurement

 To refine the risk evaluation considering other aspects
in order to obtain a more realistic measure of software
component risk

Future Works

24

 Rosenberg, L., Stapko, R., Gallo, A. “Risk-based Object Oriented Testing”.
In: Proc of. 13th International Software / Internet Quality Week-QW, San
Francisco, California, USA, 2000.

 ISO/IEC 9126-1. International Organization For Standardization ISO/IEC
9126-1, Software Engineering – Software product quality – Part 1: Quality
Model; Geneve ISO, 2001.

 Moraes, R., Durães, J., Martins, E., Madeira, H. “A field data study on the
use of software metrics to define representative fault distribution” “Workshop
on Empirical Evaluation of Dependability and Security (WEEDS) - The
International Conference on Dependable Systems and Networks” – DSN 06.

 Moraes, R., Durães, J., Barbosa, R., Martins, E., Madeira, H.
“Experimental Risk Assessment using Software Fault Injection”, “The
International Conference on Dependable Systems and Networks”–DSN 07.

References & Works

25

Thank you for your attention

regina@ceset.unicamp.br

