Abstractions for Implementing
Atomic Objects in Dynamic systems

R. FRIEDMANT M. RAYNAL* C. TRAVERS*

roy@cs.technion.ac.il {raynallctravers}@irisa.fr

T_l_eChﬁi()ﬁ, Haifa, Israel

*IRISA, Université de Rennes, France

P
— IRISA

Abstractions for atomic objects

Summary

e Computation model: Dynamic systems

x Infinite nb of clients

* Atomic objects and infinite nb of servers

e Dynamic Read/Write quorums

e Persistent reliable broadcast

e Implementing read/write operations

e Practical instantiations

e Conclusion

P

IRISA

Abstractions for atomic objects

Dynamic systems

e Clients: sequential processes

x Infinite arrival process with finite concurrency
*x Each client has a distinct identity

x Crash failure model (Recovery with a new id)
* Wait-free

e Shared object

x Read/write operations
*x Correctness criterion: Linearizability

P
— IRISA

Abstractions for atomic objects

Shared memory: set of servers

e Distributed message-passing system made up of servers
e Infinite arrival model with finite concurrency

e Server s; can:

x Enter the system (event init;)
x Crash (event fail;) or leave (event leave;)

e Each object: implemented by dynamic subset of servers

e Notation: up(t)= the servers (implementing object =z

that have entered the system before time ¢t and have
neither crashed or left before ¢

e Feasability condition: Vt: up(t) =0

P
— IRISA

Abstractions for atomic objects

Shared memory

x.READ() . WRITE(v)

\L

—_— - I___.I

e e L e L e

DYNAMIC SERVERS

P
— IRISA

Abstractions for atomic objects

Looking for Appropriate Abstractions

e If servers enter and leave the system arbitrarily fast:
nothing can be done

e Any dynamic system requires some form of eventual sta-
pbility “during long enough periods’” in order non-trivial

computations can progress

e Here we consider | abstract properties | (instead of par-
ticular duration assumptions)

*x Similarly to the failure detector approach, these prop-
erties are not related to specific synchrony or duration
assumptions. This favors good software engineering

practice (modularity, portability, proof)
* Two Abstractions

* Read/Write dynamic quorums
x Persistent reliable broadcast

B
B IRISA Abstractions for atomic objects

Operations as Intervals

e [he ath execution of a read or write operation by a
client p; defines an interval I

e A run (or history h) is a totally ordered sequence of the
events issued by the clients

e Partial order on intervals:

* I1 —p I2 if the last event of I1 precedes in h the
first event of I2

x im_pred(I1,12) (immediate predecessor)
if I1 >, 12 and AI: I1 —, IA [— I2

P
— IRISA

Abstractions for atomic objects

Associating a stability set with each interval

e I an interval that starts at time t; and ends at time ¢,

e [he following set of servers is associated with each in-
terval I:

STABLE(I) =

{s|3Ftetitl]: vt': t<t/<tl: secup()}

e Feasibility condition necessary to obtain live quorums:

VI: STABLE(I) # 0

P
— IRISA

Abstractions for atomic objects

Dynamic Read/Write Quorums (1)

o Let Q(t) be the quorum (set of servers) returned by a
quorum query issued at time t during an interval I

e Progress property:
Jte [tf,tl]: W :t<t' <tl: QW) C STABLE(I)

e [his means that an operation can eventually obtain a
quorum of alive servers: this property is a requirement
to ensure the liveness of read and write operations

B
B IRISA Abstractions for atomic objects

Dynamic Read/Write Quorums (2)

e A read/write op can invoke two types of quorums:

* cd query: to obtain a control data
*x wval query: to obtain a data

e [yped Bounded Lifetime Intersection property:

(Quat €EI1) N (Qpg € I12) N tm_pred(I1,12)
— Qval A ch # 0

It is not required that any pair of quorums intersect

It is not required that any pair of consecutive or con-
current quorums intersect

P
— IRISA

Abstractions for atomic objects 10

Intervals

14 I3
T Qecd Qual Qed Quval
0
ch Qval ch Qval
Qval(Il) M ch(I3) 7+— @
[{ ——= I3
IO / \ Qval(IQ) a ch(I4) # Q)
T, N, Qua(I1) N Qu(14) # 0
>> IRISA Abstractions for atomic objects 11

Persistent Reliable Broadcast (1)

e Extend Uniform Reliable Broadcast to dynamic systems

e Notion of persistence in message delivery

e Two primitives: prst_broadcast(m) and prst_deliver()

e Each message m has a type type(m) and a sequence
number sn(m)

e Defined by four properties:

* Validity: If a message m is delivered by a server, it
has been broadcast by a read or write operation

* Uniformity: A message m is delivered at most once
by a server

P
— IRISA

Abstractions for atomic objects 12

Persistent Reliable Broadcast (2)

e Server/server Termination: If a message m, broadcast
during an interval I, is delivered by a server, then any
server s € STABLE(I) eventually delivers a message m/

such that type(m) = type(m’) and sn(m’) > sn(m)

e Client/server Termination: If the client process does
not crash while it is executing the read or write opera-
tion defining the interval I that gave rise to the broad-

cast of m, the message m is delivered by at least one
server

B
B IRISA Abstractions for atomic objects 13

Implementing an Atomic Object Service

e Associate a timestamp with each value (classical)

e A read or write operation: two steps [Attiyva-Bar Noy-
Dolev 1995]

x Phase 1: Acquire the “last” timestamp

x Phase 2: Ensure consistency of the read or write
operation

e Here we present only the write operation (read is similar)

B
B IRISA Abstractions for atomic objects 14

Implementing a WRITE operation (1)

operation write; (x,v)

% Phase 1: synchro to obtain consistent information %
sn; «— sn; + 1; ans; «— 0;
prst_broadcast cd_req(i, sn;, NO)
repeat
wait for a message cd_ack(sn;,ts) received from s;
ans; < ans; U {s}
until (Q.4 C ans;) |;
ts.clock +— max of the ts.clock fields received +1;
ts.proc < 1;

B
B IRISA Abstractions for atomic objects 15

Implementing a WRITE operation (2)

% Phase 2 : synchro to ensure atomic consistency %
prst_broadcast write_req(i, sn;, ts,v) |,
ans; < 0;
repeat
wait for a message write_ack(sn;) received from s;
ans; < ans; U {s}
until | (Q,, € ans;)|;
return()

P
— IRISA

Abstractions for atomic objects 16

Implementing on the Sever side

Server s maintains the value values whose timestamp is tsg

when cd_req(i, sn, bool) is delivered:
iIf (bool =yes)
then val to_send +— values
else val to_send «— L
end._if;
send cd_ack(sn,ts,val_to_send) to 1

when write_req(z, sn,ts,v) is delivered:
If (ts > tss) then tsg «— ts; values +— v end_if;
send write_ack(sn) to 1

B
B IRISA Abstractions for atomic objects 17

Proof (1)

e [heorem Read and write liveness

A read or write operation executed by a process p; that
does not crash terminates

The proof relies on the stability condition

e Definitions:

* Let an effective write be a write operation whose
request has been delivered by at least one server

Let ts(w) be the timestamp associated with the ef-
fective write operation w

x Let an effective read be a read operation that does
not crash

Let ts(r) be the timestamp associated with the ef-
fective read operation r

P
— IRISA

Abstractions for atomic objects 18

Proof (2)

e T heorem Timestamp ordering property

Let opl and op2 be two effective operations, I1 and 12
their intervals with I1 —; I2. We have:

(i) If opl is a read or a write operation and op2 is a read
operation then ts(opl) < ts(op2)

(ii) If opl is a read or a write operation and op2 is a
write operation then ts(opl) < ts(op2)

e [heorem Atomic consistency

There is a total order on all the effective operations that
(1) respects their real-time occurrence order, and (2)

such that any read operation obtains the value written
by the last write that precedes it in this sequence

P
— IRISA

Abstractions for atomic objects 19

Conclusion

e [WO new abstractions for dynamic systems

x Dynamic Read/Write quorums
* Persistent reliable broadcast

e Read/Write protocols for dynamic server set

e Future work:

Investigation of feasability conditions

B
B IRISA Abstractions for atomic objects

20

