The concept of a

TIMED REGISTER

and

its application to indulgent synchronization

Michel RAYNAL and Gadi TAUBENFELD

IRISA, Université de Rennes, France

Interdisciplinary Center, Herzliya, Israel

raynal@irisa.fr tgadi@idc.ac.1il

P
— IRISA

The concept of a timed register

Summary

e Basic timing-based SM model
e Concept of a Timed Register
e Indulgent synchronization

e Indulgent agreement

e Timed register in perspective

e Conclusions

—
I IRISA The concept of a timed register

Models of computation

_ _

A A

~

Partial synchrony

Synchronous Asynchronous
(Known bounds) (No bounds)
Extremely powerful LLess powerful
Unrealistic Realistic

. IRISA

The concept of a timed register

Goal

e Observation: Many systems exhibit a significant degree
of synchrony in practice, but few guarantee to do so

e Goal

*x Exploit synchrony when it is available

* In any case guarantee correctness regardless of the
timing behavior of the system

P
. IRISA

The concept of a timed register

Part 1

BASIC TIMING-BASED SM MODEL

P
. IRISA

The concept of a timed register

Basic timing-based model

A set N of processes {...,p;, ...} (i is the of p;)

Communication by accessing atomic memory locations

Timing assumption: There is an upper bound A on
the time that can elapse between any two consecutive
memory accesses by the same process p;

It is important to notice that A is on any two con-
secutive accesses on any pair of registers by the same
process p;: the SM is considered as a ‘“single register”
from the timing assumption point of view

Timing-based algorithms:

T heir safety and liveness properties rely on such a global
bound A

P
— IRISA

The concept of a timed register

Timing-based algorithm: an example

Fischer’'s mutual exclusion algorithm

init Y « |
operation enter_mutex(7):
repeat await (Y = 1);
Y < 1; delay(A)
until (Y =) end repeat

operation exit_ mutex(): Y «+ L

Simple and elegant

P
— IRISA

The concept of a timed register

Fischer’s algorithm: illustration

Y # 1 and keeps its value until
Y «— 3 Y < 1 is executed by p;

Mutex + Deadlock-free if the A always satisfied

No guarantee when the A assumption is violated

P
— IRISA

The concept of a timed register

Part 11

The concept of a TIMED REGISTER

P
. IRISA

The concept of a timed register

Timed register: preliminaries

e Generalize the notion of atomic register by imposing
time constraints on some write operations in order they

be successful
e A write operation returns true or false

e Context:

Let Y be a timed register and p; a process
Let Y.read,;(d) be a read of Y by p;
d is a duration defined as part of the read operation

Let Y.write;(v) be the first write on Y issued by p;
after Y.read;()

Between these two operations: .
- p; can issue other operations on other registers

- Other processes can access Y

b D D D

%

—
I IRISA The concept of a timed register 10

Timed register: definition

e Constraint:

*x Y.write;(v) succeeds if Y.write;(v) and Y.read,(d) are
separated by at most d time units

x If the writer is successful it returns true, otherwise it
returns false

e T his constraint is local: it involves an ordered pair
(read;write) on the same object by the same p;

e Particular case: if a process p; always sets its constraint
d equal to +oco when it reads the timed register Y, that
register behaves as a classical register wrt p; (all its

writes are successful)

P
— IRISA

The concept of a timed register 11

Timed register: illustration

Y.read;(d) Y.write;(v)

d < §: Y.write;(v) is successful
d > §: Y.write;(v) fails

During the period 9:
e p, can access other timed or time-free registers

e Other processes can access the timed register Y

P
— IRISA

The concept of a timed register

12

Our timing-based model

e AIM: ensure that the writes can be successful

e Assumption A: There is an upper bound A on the
time that can elapse between a constraining read and
the associated constrained write issued by the same p;

on the same register (for any p;)

e Differently from the basic timing model, here the as-
sumption A is LOCAL

e A\ can be known or unknown

P
— IRISA

The concept of a timed register 13

Failures and indulgence

e J[ransient failures:
when the bound A is violated intermittently

e Indulgent algorithm:

*x Safety: never violated
x Liveness: asa there are no more failures

e T[imed registers are universal objects in systems that
eventually satisfy the A assumption

P
— IRISA

The concept of a timed register 14

A basic pattern

init Y = 1; Vi: v; = L
Y is not accessed outside the pattern
The pattern is executed at most once by each p;

PAT TERN:
while (Y.read(§) = L) do Y.write(v;) end while;
Here: Y has a non-_L value
delay(9).
Here: Y has its definitive value

Connection with compare&swap()

P
P

IRISA

The concept of a timed register 15

Part III

INDULGEN'I

SYNCHRONIZATION

P
— IRISA

The concept of a timed register

16

Indulgent mutual exclusion: algorithm

Y = 1 & Yprocesses are competing”
The algorithm is an instance of the basic pattern

operation enter_mutex(7):
repeat
await (Y.read(A) = 1);
iIf Y.write(7) then delay(A) end if
until (Y.read(oco) = i) end repeat

operation exit_mutex():
Y.write(_L)

P
— IRISA

The concept of a timed register

17

Indulgent mutual exclusion: properties

e Makes indulgent Fischer’s algorithm
e \Works for any number of processes
e It is symmetric (proc indexes are only compared)

e Uses a single timed register

e \When the bound A is not known
e Assume a process does not crash in its critical section

e Easy extension to the /-mutex problem

P
— IRISA

The concept of a timed register

T he adaptive Wait-free renaming problem

e Processes wants to acquire (and later release) new names
from a small name space [1..M]

e If a single process (e.g., pn) wants to acquire a new
name, it cannot consider its index as its new name

e Resource allocation problem: the resources are the new
names

e [he best that can be done in a RW asynchronous SM
system with up to n— 1 crashes M = 2p — 1 (where p is

the nb of participating processes)

e Consensus number of renaming is 2 (same as test&set)

—
I IRISA The concept of a timed register 19

Adaptive Wait-free renaming algorithm: algorithm

Shared array Y[1..n] such that

Y [c] controls the assignment of the new name ¢
New name space M =p

operation get name(7):
c; < 1;
repeat
while (Y [¢;].read(A) #= 1) do c + ¢; + 1 end while;
iIf Y[c;].write(7) then delay(A) end if
until (Y|[¢;].read(cc) = ¢) end repeat;
return (c¢;)

operation release name(c;):
Y [¢;].write(_L)

—
I IRISA The concept of a timed register 20

Part 1V

INDULGENT AGREEMEN'I

P
. IRISA

The concept of a timed register

21

Indulgent test&set with known bound

Test&set object: elects a single winner
The algorithm is another instance of the basic pattern

operation 7'S.test&set():
while (Y.read(A) = 1) do
If Y.write(7) then delay(A) end if
end while;
If Y.read(oo) = ¢ then return(1) else return(0) end if

operation 7S.reset():
Y.write(_L)

e Can be extended when A is unknown

P
— IRISA

The concept of a timed register

22

The consensus problem

e Each process p; proposes a value (v;)

e Properties:

*x Validity: a decided value is a proposed value
* Agreement: no two processes decide different values
* lermination: every non-faulty process decides

e \Wait-free: termination has to be ensured whatever the
number of process crashes

e Consensus universality: Atomic registers and consensus
objects allow wait-free implementing any object that has
a sequential specification

e No solution in asynchronous RW SM systems

P
— IRISA

The concept of a timed register 23

Indulgent consensus with known bound

operation consensus(v;):
while (Y.read(A) = 1) do Y.write(v;) end while;
delay(A);
return(Y.read(o0))

Simple, but not fast!
Aim: allow for fast decision in good circumstances

Good circumstances: Here, when o _
a single value is proposed and there is no timing failure

P
— IRISA

The concept of a timed register 24

Fast indulgent consensus with known bound

X[1..b] of boolean values initialized to [false, ..., false]
X[v] & the value v has been proposed

operation consensus(v;):
X [v;] < true;
while(Y.read(A) = 1) do Y.write(v;) end while;
iIf (Jv: v # v; A X[v]) then delay(A) end if;
return(Y.read(o0))

When a single value is proposed: no process is delayed

No timing failure: 2/3 accesses to Y, b accesses to X|[1..5]
(4/5 accesses for boolean proposals)

P
— IRISA

The concept of a timed register 25

Fast indulgent consensus with unknown bound

Shared array of 1WnR atompic regsiters DELAY[1..N]
DELAY [i]: p;'s curent approximation of A

operation consensus(v;):

X[v;] < true;
while (Y.read(d;) = 1) do

iIf = (Y.write(v;))

then d; < d; + 1;: DELAY[i] « d; end if

end while;
iIf (Jv: vy AX[v])

then delay(max({DELAY[k:]1<k<n})) end If;
return(Y.read(o0)) -

P
— IRISA

The concept of a timed register 26

Part V

TIMED REGISTERS
in PERSPECTIVE

P
— IRISA

The concept of a timed register

27

Timed registers vs Sticky bits (Plotkin)

e A sticky bit is initialized to L, can then contain O or 1

e A write returns false if the value it is trying to write

disagree with the already written value, otherwise it re-
turns true

e Sticky bits and timed registers are universal objects

e Sticky bits and timed registers have different types:

*x Sticky bits are write-once objects that are not time-
constrained

* Timed registers are not write-once, but their writes
are time constrained

P
— IRISA

The concept of a timed register 28

Obstruction-freeness and abortable objects

e Obstruction-free property:

*x Safety is never violated

*x Liveness is guaranteed (only) when a process executes
alone (i.e., in the absence of concurrency)

e Abortable objects:

* An abortable object behaves as an ordinary object
when it is accessed sequentially, but an operation may
return L when the object is accessed concurrently

P
— IRISA

The concept of a timed register 29

Obstruction-free/abort. objects vs Timed Reg.

e Obstruction-freeness, abortable objects:

x In both cases, the “undesirable” behavior occurs in
presence of concurrency

x | hese notions are contention-oriented

* Liveness can be ensured by using additional contention
managers (e.g., 2, OP)

* [he progress of a process depends on the others

e Timed registers:
*x Independent of the concurrency degree, of the (speed
of the) other processes

x T his notion is time-oriented
* When satisfied, the assumption A: ensures liveness

* [he progress of a process depends only on itself

P
— IRISA

The concept of a timed register 30

Obstruction-free/abort. objects vs Timed Reg.

e Some duality

e Both a contention manager and the assumption A are
SCHEDULERS that provide appropriate fairness rules
iIn order operations issued by the processes terminate

P
— IRISA

The concept of a timed register 31

Conclusion

e Notion of timed register (new object type)
e Indulgent synchronization, Indulgent agreement
e Universal object when A is eventually satisfied

e Duality wrt obstruction-freedom, abortable objects

P
— IRISA

The concept of a timed register

32

Conclusion cont’d

e Consider other timed objects (queues, stacks, etc.)

e Address other problems (e.g., fast mutex)

e \What when the timed registers are faulty?

P
— IRISA

The concept of a timed register

33

