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i Two Recent Projects

= Reliability Analysis of Boeing 787
Current Return Network (CRN) for FAA
Certification

= User-perceived reliability of SIP protocol
on High Avallability IBM
WebSphere/BladeCenter
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i Boeing 787 CRN

= Work done with Dazhi Wang, Tilak Sharma, A. Ramesh
and others at Boeing

Modeled as a reliability graph or relgraph
Also known as the s-t connectedness problem
Or as the Network reliability problem

A simple, series-parallel version is known as the
reliability block diagram (RBD)

It is a combinatorial on non-state-space model type which
are thought of not being plagued by the largeness
problem
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i Reliability Graph

= Consists of a set of nodes and edges
= Edges represent components that can fail

= Two distinguished nodes:

= Source and target nodes
= System fails when no path from source to target

= This model type is less commonly found in
software packages compared with fault tree
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Current Return Network Modeled

as a Reliability Graph
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i Relgraph solution methods

= Factoring or conditioning
= Not easy to decide which link to factor on
= Repeated factoring needed

= Find all minpaths followed by sdp (sum of
disjoint products

= Bdd (binary decision diagrams)-based method

= Last two have been implemented in SHARPE

= Initial run by SHARPE could not solve the
problem!
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Too many minpaths

= Combinatorial models may also face largeness problem
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= Compute reliability bounds instead of exact reliability 2=
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i Our Approach

= Developed a new efficient algorithm for
(un)reliability bounds computation and

Incorporated in SHARPE

runtime 20 seconds 120 seconds

900 seconds

upper bound | 1.1460365721e-008 | 1.0814324701e-008

1.0255197263e-008

lower bound | 1.0199959877e-008 | 1.0199959877e-008

1.0199959877e-008

= Boeing has decided to file a patent on the

algorithm

= Satisfying FAA that SHARPE development used
DO-178 B software standard was the hardest

part
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Numerical Results

Bounds difference vs. #paths selected
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i Modeling SIP Application Server
Dependability

Kishor Trivedi
Contributors: Dazhi Wang, Jason Hunt, Andy
Rindos, and many others at IBM and at TELCO
customer
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Hardware/Software Configuration
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* Failures Incorporated in Models

Physical faults Software failures

midplane Network S
faults Application

Memory faults

NIC faults

CPU faults

base faults

I/0 (RAID) faults

Process hang Process die
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i Our Contributions (1)

= Developed a very comprehensive availability model
= “Discovered the Software failure/recovery architecture
= Hardware and software failures
= Hardware and Software failure-detection delays
= Software Detection/Failover/Restart/Reboot delay
= Escalated levels of recovery
« Automated and manual restart, failover, reboot, repair
= Imperfect coverage (detection, failover, restart, reboot)
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Our Contributions (2)

= Developed a new (first?) method for calculating DPM (defects
per million calls) (IBM is filing for a patent on this algorithm)

= Taking into account interactions between call flow and
failure/recovery & Retry of messages

= Many of the parameters collected from experiments

= Detailed sensitivity analysis to find bottlenecks and give
feedback to designers

= This model made the sale of this system to the Telco customer
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Parameterization

= Hardware/Software Configuration parameters
= Hardware component MTTFs

= Hardware/Software
Detection/Failover/Restart/Reboot times

= Repair time
= Hot swap, multiple components at once, field service travel
time
= Software component MTTFs (experiments have
started for this)
= OS, WAS, SIP/Proxy

= Coverage (Success) probabilities
= Detection, restart, failover, reboot, repair

= Validation (?)
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Thank You!




