IFIP WG 10.4 53" Meeting

Natal, Brasil

Research Report

Kishor S. Trivedi
Dept. of Electrical & Computer Engineering
Duke University
Durham, NC 27708
kst@ee.duke.edu
www.ee.duke.edu/~kst

February 25, 2008

i Two Recent Projects

= Reliability Analysis of Boeing 787
Current Return Network (CRN) for FAA
Certification

= User-perceived reliability of SIP protocol
on High Avallability IBM
WebSphere/BladeCenter

[SSSE— o]
”@m) :
D—

Dept. of Electrical & Computer Engineering, Duke University

i Boeing 787 CRN

= Work done with Dazhi Wang, Tilak Sharma, A. Ramesh
and others at Boeing

Modeled as a reliability graph or relgraph
Also known as the s-t connectedness problem
Or as the Network reliability problem

A simple, series-parallel version is known as the
reliability block diagram (RBD)

It is a combinatorial on non-state-space model type which
are thought of not being plagued by the largeness
problem

Dept. of Electrical & Computer Engineering, Duke University

i Reliability Graph

= Consists of a set of nodes and edges
= Edges represent components that can fail

= Two distinguished nodes:

= Source and target nodes
= System fails when no path from source to target

= This model type is less commonly found in
software packages compared with fault tree

Dept. of Electrical & Computer Engineering, Duke University

Current Return Network Modeled

as a Reliability Graph

Al BL D E1
B2 D2
A2 B3 D3 E2
A3 D4 ™
/g/ D5 E3
A5 Cl D7 4 E
B6
A6 c2 Dg 5
A7 \ 43 / a \Dg j E6
source \ D 1 \
B9 C4 N
A8 5/ /012
B % E
/ A9 D1 /'
A10 B11 C6 D14 E9
B}}/ D&S
D16 E10
E13
D17/ X\ D18 E1l
Pt Do E1

Dept. of Electrical & Computer Engineering, Duke University

F3
F1 '0\ F5

F2
F4

F6

F8 / %10

F9

target

DUKE

i Relgraph solution methods

= Factoring or conditioning
= Not easy to decide which link to factor on
= Repeated factoring needed

= Find all minpaths followed by sdp (sum of
disjoint products

= Bdd (binary decision diagrams)-based method

= Last two have been implemented in SHARPE

= Initial run by SHARPE could not solve the
problem!

Dept. of Electrical & Computer Engineering, Duke University

Too many minpaths

= Combinatorial models may also face largeness problem

Al Bl D El
B2 D2
A2 B3 D3 E2 F3
A3 D4 LN rs
b b5 g PEM " node #paths
\ g F2 FE. —target 40
A | cl D7 E F4 :
6 / D1y —target 143140
- ; ¢ D§ | 3 Cy —target 308055
A7 “ ég// 03 &Dg | E6 Bg) —’tdl}.’,@t 21054950355
| Bg\ . pig,), QU 7 e Ag —target 161604232201
"8 ‘ o ; source — target | 4248274506778~ 4 x 10"
: 5) :
ﬁ/ s . / Number of paths from source to target
B}}/ 15 F6
D16 E10 g
D17/ X\ D18 P e, %10
F9
51/ Do EL

= Compute reliability bounds instead of exact reliability 2=

Dept. of Electrical & Computer Engineering, Duke University

i Our Approach

= Developed a new efficient algorithm for
(un)reliability bounds computation and

Incorporated in SHARPE

runtime 20 seconds 120 seconds

900 seconds

upper bound | 1.1460365721e-008 | 1.0814324701e-008

1.0255197263e-008

lower bound | 1.0199959877e-008 | 1.0199959877e-008

1.0199959877e-008

= Boeing has decided to file a patent on the

algorithm

= Satisfying FAA that SHARPE development used
DO-178 B software standard was the hardest

part

Dept. of Electrical & Computer Engineering, Duke University

Numerical Results

Bounds difference vs. #paths selected

1 T T T T T T

log 10(U L)
i

g_ —

10 1

11 L L L L L L
0 5 10 15 20 25 30 35

#paths selected

Bounds Difference vs. Paths/Cutsets Selected

Dept. of Electrical & Computer Engineering, Duke University

|

i Modeling SIP Application Server
Dependability

Kishor Trivedi
Contributors: Dazhi Wang, Jason Hunt, Andy
Rindos, and many others at IBM and at TELCO
customer

DUKE
Dept. of Electrical & Computer Engineering, Duke University E

Hardware/Software Configuration

Blade Chassis 1

[As1

AS 2

Replication Domain i

Replication Domain 2

[Proxy 1
DM

3 s |

Blade 1

T
Blade 2

eplication Domain 3

/

4 |
) Test Driver
) |
]
T
I I
Test drivers IBM Load
i Balancer
1
IBM PC
Test Driver

AS 1thru AS 6 are
Application Server

Proxy 1's are Stateless
Proxy Server

Dept. of Electrical & Computer Engineering,

SIP

\

Blade Chassis 2

—

] se

Proxy 1

[

"

Blade 1

[As1

Blade 4

/ R%&/ Domain 4
d

|
%Repaﬂ)n Domain 5

Replication Domain 6

/

Duke University

Replica
tion
domain

Nodes

1

A D

A E

B, F

B,D

C,E

O OB |IWIDN

C,F

DUKE

* Failures Incorporated in Models

Physical faults Software failures

midplane Network S
faults Application

Memory faults

NIC faults

CPU faults

base faults

I/0 (RAID) faults

Process hang Process die

Dept. of Electrical & Computer Engineering, Duke University

i Our Contributions (1)

= Developed a very comprehensive availability model
= “Discovered the Software failure/recovery architecture
= Hardware and software failures
= Hardware and Software failure-detection delays
= Software Detection/Failover/Restart/Reboot delay
= Escalated levels of recovery
« Automated and manual restart, failover, reboot, repair
= Imperfect coverage (detection, failover, restart, reboot)

Dept. of Electrical & Computer Engineering, Duke University

Our Contributions (2)

= Developed a new (first?) method for calculating DPM (defects
per million calls) (IBM is filing for a patent on this algorithm)

= Taking into account interactions between call flow and
failure/recovery & Retry of messages

= Many of the parameters collected from experiments

= Detailed sensitivity analysis to find bottlenecks and give
feedback to designers

= This model made the sale of this system to the Telco customer

DUKE

Dept. of Electrical & Computer Engineering, Duke University

Parameterization

= Hardware/Software Configuration parameters
= Hardware component MTTFs

= Hardware/Software
Detection/Failover/Restart/Reboot times

= Repair time
= Hot swap, multiple components at once, field service travel
time
= Software component MTTFs (experiments have
started for this)
= OS, WAS, SIP/Proxy

= Coverage (Success) probabilities
= Detection, restart, failover, reboot, repair

= Validation (?)

Dept. of Electrical & Computer Engineering, Duke University

Thank You!

