
Safety Demonstration

and

Software Development

Jean-Claude Laprie

10.4 52nd Meeting - Uphall - 28 June-2 July

Workshop on Achieving and Assessing Safety

with Computing Systems: State of the Art and

Challenges

Is it possible to demonstrate the same safety level

without resorting to mathematically formal methods

for developing safety-critical software?

Context: questionning on current software development approach,

mathematically formal development by B-method

Keyword: demonstrate

Attitude: no a priori, together with

Experience in fault tolerance rather than in formal

approaches

Knowledge of current system approach (validation of the

coded processor for speed control of SACEM A-line of

Paris regional trains, PADRE protocol for consistency in bi-

processor architectures for sidetrack equipments)

Study performed for RATP (Régie Autonome des Transports

Parisiens), the utility organisation for public transportation in

Paris and region

Reminding the infeasability of quantifying reliability of safety-critical software

Situating the current RATP approach

Examining alternate approaches for safety-critical software development

Coming back to RATP approach

Underlying assumptions: specification correctness, static data

Structure of development process

Concluding recommendation: pursue mathematically formal development

Development process

for software reliability

System vision for

safety demonstration

System from components

Reliability growth models
Inappropriate for safety-critical

software

Predictive evaluation

Experimental demonstration of 10-n failure rate (/h ou /demand)

n 10n failure-free executions (cumulative duration or number)

Failure-free tests

+

Input domain coverage

Validation Operational life

m 10m failure-free

exécutions, m<n

Failure rate 10-m

Actual failure rate?

Infeasability of quantifying reliability of safety-critical software

Incorporation of past experience

Situation of the current RATP approach

Civil avionics

Diversity, or dissimilarity,

at several levels

Hardware Software Control

surfaces

Nuclear protection

In-depth defenses

Differing

technology

barriers

Delay

before

reaction

Railway signalling
[SIL 4 – Safety Integrity Level – of CENELEC EN 50126 standard]

End-to-end control

Itinerary control

Safety net

Speed control

Coded processor

Coded processor

Independence of failures of processor and of signature controler

Static data correctness

Assumptions

Absence of signature aliasing Code length and key

Specification correctness

Absence of faults created during software development

Correctness of application software

Consistency checking (invariant preservation)

Refinement checking (correct refinement)

Mathematically formal development: fault prevention

based on calculi in mathematical logic together with

theorem proving

Execution flow signature embedding arithmetic code, computation cycle

datation quantifiable safety via probability of undetected error

Confidence

in absence

of fault

Verification effort

Type

control

Static

analysis

Model

checking

Theorem

proving

Formal verification

Alternate approaches for safety-critical software development

Complements, or

replaces, testing,

esp. unit testing

Unavoidable

simplifications of model

and properties

Synchronous languages

Software diversity

Loss of end-to-end control

Availability penalty

(Static data correctness)

(Specification correctness)

Failure independence of hardware support to execution

Hardware diversity

Assumptions

Version or variant failure

independence

Absence of common-

mode residual fault

Not demonstrable at required level

(although reliability improvement exhibited

by all experiments and by operational data)

Flashback on RATP approach

Initial step informal in essence

‘Semi-formal’ methods

Currently : SADT et ASA+ Explored : UML

Formalisation?

Link UML B

Specification correctness

Check-lists

Models and simulations

On-going formalisations

Safety specification

Structure of development process

Formal development

Cost reduction

Re-introduction of unit testing

Larger number of faults to remove

Informal development

Static data correctness

Static data describe environment (track and station topology,

location of sidetrack equipments)

Basic data, from which invariants are generated, in addition to

some computation data

Achilles tendon of any control system, as

basic data can only be validated by reviews and inspections

Memory size for static data may, and usually does exceed

memory size for programmes

Conclusion : recommendation to pursue mathematically formal

development together with coded processor

System recommendation

Quantifiable safety demonstration based on assumptions weaker

than other foreseen (foreseable?) approaches

Adequacy of B method to RATP applications

Other applications

Past and current evolutions

Difficulties

Necessary mathematical culture

Tool limitations

Another, independent, study reached same conclusion

Contract for automating subway line #1 (most busy line of Paris

subway) awarded to industrial proposal offering mathematically

formal software development

