Functional Safety Experience on Railway Signalling in Japan

Yuji Hirao Nagaoka University of Technology (Japan)

Functional Safety Experience on Railway Signalling in Japan

- Application of computers to railway signalling in Japan
 - Technical breakthroughs
 - Safety guidelines
- 2. Functional safety experience: current situation
 - Functional Safety Standards
 - Quantitative Safety Evaluation and Hazard Analyses
 - Evaluation of Safety Measures
 - Risk Management
- 3. Outstanding questions to be addressed

1. Application of computers to railway signalling in Japan

- Technical breakthroughs

Safety technologies for computerised control

Fail safe
keeps safe state even in malfunction
Definition of safety is possible (standstill)

relay

Micro-computer

Technical Principles for Safety

- Redundancy (e.g. CPUs, Software)
- Diagnosis
- Fixed safe output

Redundant CPU Architecture

Comparator with 2-pair 2-bit comparison

Basic concept

Hardware Techniques

(1) System structure

(a) redundant configuration

- duplicate
- stand-by double duplicate
- TMR

(b) comparison

- computer-bus level by fail-safe comparator
- comparison of results

(c) multiprocessor

- access to common memory
- fault-tolerant connection of multiprocessors
- avoidance of bus collision in the case of disturbance of common signals

(d) monitoring

diagnosis functions by quasi-signals

(2) Processing

(a) redundant configuration

- bus synchronisation
- fail-safe comparator
- timing for comparison
- input of interruption signal
- diagnosis of comparator
- mask of intermittent error
- segue from triple-redundancy to double
- measures for electrical source fluctuation
- compensation for timing difference
- priority of dangerous-side input data in the case of disagreement

(b) error detection

- alternating output
- processing of alternating signal
- data processing by code checking data
- diagnosis of RAM and ROM

(c) circuit design

- fail-safe frequency transformer
- fail-safe watchdog timer

(d) other

fixing of unused bits

(3)Input/output

(a) redundant configuration

- priority of lower value
- conjunction of 2 CPUs
- cross-input of data
- changeover of master and slave systems
- synchronisation of input data

(b) error detection

- diagnosis by test input data
- diagnosis of input data by opposite value input data

(4) Interface

(a) redundant configuration

transmission drive by conjunction of CPUs

(b) multiprocessor

- processing of common signals
- measures for delay of bus arbiter
- measures for electrical source switching in the module

Software Techniques				
(1) OS (a) interruption prohibition of interruption	(2) Common subroutine, firmware (a) common subroutine common programs for quasi synchronisation			

(3) Application

(a) system

- continuation of conventional system design
- control cancellation in the case of field equipment dysfunction
- safety processing when transmission disconnected
- information refreshment
- guarantee of continuity during changeovers
- procedures at error detection and resumption

(b) program

- separation of safety-related processing from nonsafety processing
- simplification of program structure
- prohibition of "GO TO" sentence
- consistent allocation of safe and unsafe position

(4) Input/output, interface

(a) input/output

- combination of input data
- multiple input agreement (avoidance of transient values)
- checking of input data (average value and range)
- measures for incorrigible dangerous output

- diagnosis of input hardware
- feedback check of output

(b) transmission

measures for serial data transmission

(c) CPU

transmission check between CPUs

(d) man-machine

- rejection of mistaken control
- protection mechanism for mistaken operation
- consistency check for operation input data
- quidance for protection against mistaken operation
- guaranteed correctness of VDU information

(5) Interface

(a) redundant configuration

transmission drive by conjunction of CPUs

(b) multiprocessor

- processing of common signals
- measures for delay of bus arbiter
- measures for electrical source switching in the module

(6) Other

(a) other

- independence of design and checking
- layer system for checking common functions

1. Application of computers to railway signalling in JapanSafety Guidelines

Safety Guidelines for introduction of microelectronics to railway signalling in Japan (1996)

- the first electronic interlocking (1985) (>1,000 stations)
 safety guidelines in 1980s (within-department-purpose)
- specialists' committee (1994-1996)
- ♦ IEC 61508

New Safety Guidelines for Computerised Train Control and Protection Systems

Regulation

Safety technologies cultivated in Japanese signalling

Interlocking, ATC

International safety standards IEC 61508

General-purpose

Functional Safety Experience on Railway Signalling in Japan

- Application of computers to railway signalling in Japan
 - Technical breakthroughs
 - Safety guidelines
- 2. Functional safety experience: current situation
 - Functional Safety Standards
 - Quantitative Safety Evaluation and Hazard Analyses
 - Evaluation of Safety Measures
 - Risk Management
- 3. Outstanding questions to be addressed

- 2. Functional safety experience: current situation
 - Functional Safety Standards

Functional Safety Standards

- ◆ IEC 61508
 - An umbrella safety standard for conputerised control
 - Two concepts:
 Safety lifecycle and Safety integrity
- Railway Signalling Situations
 (almost the same as IEC 61508; no conflict)
 - Sector-specific situations
 - Driving force for introduction

IEC / TC9 standards for railway applications

CENELEC (Europe) for railway signalling

EN 50126 (RAMS)

EN 50128 (Software)

EN 50129 (Safety Cases)

EN 50159 (Transmission)

Fast Track Procedures **IEC** (International)

CDV (Committee Draft for Voting)

IEC 62278 (RAMS)

IEC 62279 (Software)

IEC 62425 (Safety Cases)

IEC 62280(Transmission)

Driving force in the background:

EU unification

Interoperability = ERTMS

(European Railway Traffic Management System)

2. Functional safety experience: current situation

- Quantitative Safety Evaluation and Hazard Analyses

Tolerable Hazard Rate and Safety Integrity Level (IEC 62425)

THR (h ⁻¹ / Function)	SIL
10 ⁻⁹ THR < 10 ⁻⁸	4
10 ⁻⁸ THR < 10 ⁻⁷	3
10 ⁻⁷ THR < 10 ⁻⁶	2
10 ⁻⁶ THR < 10 ⁻⁵	1

Application of Functional Safety Standards for Railways (1)

(almost the same as IEC 61508; no conflict)

Uncertainty of quantitative risk analysis and allocation of safety integrity levels

- Estimation of probability is not easy because of
- Insufficiency of actual statistical data

Emphasis on hazard analysis

Specifying failure causes is crucial (FTA)

Application of Functional Safety Standards for Railways (2)

Absolute Value vs. Comparative Value

Final Confirmation

(absolutely the same or better)

Identification of

More Dangerous

Hazards

(by comparison)

- ◆Necessity of a Prudent Approach
 - the lack of a database
 - the inherent danger of new systems
 - the limits of modelling

An Example of Hazard Analysis

COMBAT = a blocking system a new train detection by microwave balises

+ centralised electronic interlocking (blocking function)

train detection processing unit

COMBAT Configuration

An Example of the Results of Safety Analysis

An Example of the Results of Safety Analysis

Abbreviated

Subsystem Function block Failure mode			Anticipated	Influence		X	
			causes of failure Hardware Electric source Human	Failure	Range (scope)	Situations	Hazard level
detection	gator	Oscillation		Ground repeater information receipt	a) The two blocks, one each side of the interrogator b) The block between the interrogator and the next station	Non- detection of train entry	***************************************
Baise train detection	Interrogator	Inappropriate installation position	Disasters, etc.	No shut-down between interrogator and responder but with train direction detection	Block section recently vacated	False block-is- empty signal	

FMEA: Failure Mode and Effect Analysis

- 2. Functional safety experience: current situation
 - Evaluation of Safety Measures

for Micro-computerised Signalling Systems

Multiple Application of Safety Measures

<= Many individual effects interact in unclear ways

Quantitative Evaluation of Effects and Interactions

=> Simpler (and cheaper) singalling systems

Formulation of the Effects of Each Safety Measure and Integrated Framework for Evaluation

Formulation of the Effects of Each Safety Measure

Failure rate $_2$ Comparison Period T_A

The Effect of Double Input Architecture

$$_{2}$$
 T_A = 1.1 x 10⁻⁹
 $_{2}$: Failure Rate 10⁻⁵ [/h]

 $_{3}$ T_A : Comparison Period 1.1 x 10⁻⁴ [h]

 $_{4}$ (0.4 sec)

Framework for Evaluation of Safety Measures

System Analysis

Function analyses

Function correlation analyses

Malfunction influence analyses

> **Evaluation of** Safety Measures

Fatality matrix *CM* construction

Fatal failure selection vector (row) E construction

Safety Measures Matrix (mitigation matrix) M_M construction

Safety measures set vector $(row)^{\prime} M$ construction

Function failure rate setting

> Correlation matrix P_M construction

Failure rate vector (column) A construction

Malfunction occurrence vector (column) G construction $G = P_M \cdot A$

$$R = f \{ CM \cdot G \}$$

System dangerous failure occurrence probability

$$D = E \cdot G$$

Residual failure probability

$$L = M_M \cdot A$$

System residual failure probability

$$S = M \cdot A$$

Dangerous failure probability despite safety measures

$$Q = \underbrace{E \cdot P_M \cdot M^*}_{G} \cdot A$$

An Example of Safety Analysis of a Fail-safe CPU Board

Malfunction occurrence vector (without safety measures) **G**

G₁	Non-code output	1.48×10 °[/h]
G ₂	Wrong code output	7.48×10 ⁻⁷ [/h]
G ₃	Zero output	1.25×10 ⁻⁶ [/h]
G ₄	One output	4.49×10 ⁻⁷ [/h]
G ₅	Output ceases	8.00×10 ⁻⁷ [/h]

Correlation matrix **PM**

$$\cdot$$
 1 0.5 10⁻³

Failure rate vector **A**

3×10⁻⁸

3×10⁻⁸

	1	Input circuit 0-stick	[/h]
	A ₂	Input circuit 1-stick	3×10 ⁻ [/h]
C	A ₃	Input circuit intermittent failure	1×10 [/h]
	A ₄	Bus 0-stick	3×10 ⁻ [/h]
	A ₅	Bus 1-stick	3×10

Bus intermittent

failure

Effects of safety measures

 A_6

 $D = G_2 + G_4 = 1.2 \times 10^{-6}$

Malfunction occurrence vect (with safety measures) G

Safety measures M

Salety Heasures IVI				
M ₁	Pulse input checking			
M ₂	Front and back contact checking			
M ₃	Masking of uncertain input			
M ₄	Logical checking of input data			
M_5	Fail-safe comparator			
M ₆	Software self-diagnosis			

Sa M

at	ety M	easur	res M	latri	Х.	M	1
		0.001					
	0.001	0.001	0.05	0.5	•	•	
	0.5	0.5	0.05	1	•	•	
	0.05	0.005	0.05	0.5	•	•	
	•	•	•	•	•	•	
		•	•	•	•	•)	

False output (danger $G_2' = 7.8 \times 10^{-11}$

$$G_4' = 1.1 \times 10^{-10}$$

$$Q = G'_2 + G'_4$$

= 1.9 × 10⁻¹⁰

- 2. Functional safety experience: current situation
 - Risk Management

Risk Management

- 1. Necessity of the Hazard List and its Methodical Assembly
- 2. Extension of Risk Analysis to Safety-related Systems
- 3. Railway Signalling System Reconstruction by RAMS Criteria

Necessity of the Hazard List and its Methodical Assembly

- Identification of Hazard is crucial
- Dangers may be hidden or latent
- Hazard lists specific to Railway Signalling
 - Circuit device failures
 - Circuit design inappropriate
 - Operation error

2. Extension of Risk Analysis to Safety-related Systems

Obstacle Detection by Image Processing Safety-related Functions

- Hazard
- Risk

Necessity of Diagnosis

Identification of Hazard

Influence of Variable Lighting Conditions on Image Processing for Obstacle Detection

Risk Analysis of Image Processing for Level Crossing Obstacle Detection

FTA of Image Processing (Identification of Hazards)

Counter Measures/ Evaluation

3. Railway Signalling System Reconstruction by RAMS Criteria Reliability

Availability
Maintainability
Safety

Each signalling system shows constant improvement (viewed separately)

The influence on overall train operation (delay time)

- Harmonisation of reliability and cost-effectiveness
- Quick recovery from and small influence of malfunctions

Signalling System Reconstruction

Point machines

Example of Failure Rate Analysis

Proposed Signalling System Processes

Function Analysis

- Requirements
- Structures

Possible Candidate
Solutions
(System A, B, etc.)

Existing and Applied Conditions (Load, Stations, etc.)

RAMS Evaluation Tool (Simulator)

(Evaluation from RAMS point of view)

Proposed System

The best inside the proposed and existing conditions

An Example of a Proposed System

- Radio and Train Control Device
- Radio
- Point Machine and its Control Device
- Track Circuit and its Control Device

Track Circuit

Train and On-board Control Device

LAN

Functional Safety Experience on Railway Signalling in Japan

- Application of computers to railway signalling in Japan
 - Technical breakthroughs
 - Safety guidelines
- 2. Functional safety experience: current situation
 - Functional Safety Standards
 - Quantitative Safety Evaluation and Hazard Analyses
 - Evaluation of Safety Measures
 - Risk Management

3. Outstanding questions to be addressed

3. Outstanding questions to be addressed

Outstanding Questions

- 1. Increasing Integration of Hardware
 - ⇒ Uncertainties in diagnosis
- 2. Safety Assessment
 - Documentation
 How many documents are documents enough?
 cost
 - Safety
 How safe is safe enough?
 - Appropriate Safety Assessment Criteria
- 3. Software