
Program-level Soft Error Derating in

a Brake-by-Wire System

Daniel Skarin and Johan Karlsson

Department of Computer Science and Engineering

Chalmers University of Technology

Göteborg, Sweden

Martin Sanfridson

Volvo Technology

Göteborg, Sweden

Motivation

Current automotive electronic systems are used to assist the driver

Anti-lock braking system (ABS)

Electronic stability program (ESP)

Adaptive cruise controller (ACC)

Safe shutdown is a viable approach to handling failures in these systems

Future electronic systems will include

Advanced active safety system (e.g. collision mitigation)

Brake-by-wire

Steer-by-wire

Reliability and safety requirements of automotive electronic systems will become strict
because

Advanced active safety systems take full control of vehicle

=> Failures may have more severe consequence than in today’s systems

Brake-by-wire and steer-by-wire cannot be shut down while driving.

Brake-by-wire and Collision Mitigation

System

Full authority system - Takes control of the vehicle in emergencies

False activations are potentially very dangerous

Main challenge - Systems must be low cost and extremely reliable

Wheel

nodes

Wheel

nodes

Pedal

nodes

Wheel

nodes

Wheel

nodes
Senor

nodes

Architectural Trade-Offs

Node replication

Single nodes – cost-effective, but may not achieve adequate partitioning coverage

Double nodes – provide effective physical partitioning, but costly

Triple nodes – high degree of fault tolerance, but may be too costly

Node design

Internally fault-tolerant – can become cost-effective with systems-on-chip solutions

Self-checking – minimum requirement

No error handling (probably not an option)

Network design

Redundant wired network

Bus topology, Star topology, etc.

Non-redundant wired network with wireless backup

Multi-layer fault-tolerance

HW Design
Faults

SW Design
Faults

Physical
Faults

Fault

tolerated

Detected

Error
Undetected

Error

Circuit-layer mechanisms

Node-layer mechanisms

System-layer mechanisms

Fault

tolerated

Interference

failure

Timing

failure
Value
failure

Fail

signal

Fail
silent

Fault

tolerated

Catastrophic

failure

Benign

failure

Safe

Shutdown
 C

o
s
t
b
a
la

n
c
in

g

Outline

Objectives, assumptions and research questions

Causes of soft errors

Impact of soft errors in the IBM Power6 microprocessor

Our experimental setup

Results – impact of soft errors

Conclusions and ongoing work

Research Objectives

Investigate the impact of soft errors on the wheel control loop of a

brake-by-wire system

Assess the feasibility of using a microcontroller with non-prefect

coverage of soft errors for the wheel control

Assumptions

Future microcontrollers will be manufactured in circuit technologies (e.g.

90 nm or 65 nm CMOS) that are sensitive to cosmic ray induced high

energy neutrons

These microcontrollers will be equipped with error detection and error

correction mechanisms that can detect, mask and recover from a

majority of the soft errors

However, these mechanisms will not have prefect error coverage

Hence, some soft errors will propagate to the architected state

(CPU registers and main memory)

Causes of soft errors

Terrestrial cosmic rays

Primarily neutrons, but also protons and some pions

Generated when cosmic particles interact with atomic nuclei in the

atmosphere

Alpha particles

Typically emitted from trace amounts of Uranium and Thorium found in

production and packing material

Thermal neutrons (< 0.4 eV) captured by 10B

n + 10B 7Li (0.84 MeV) + 4He (1.47 MeV) + gamma (0.48 MeV)

Cross-talk

Aging faults

Negative Bias Temperature Instability (NBTI)

….

Flux of cosmic ray-induced

 high-energy neutrons

The neutron flux is influenced by latitude, longitude, altitude, atmospheric

pressure, and solar activity

Reference point: New York City, sea-level, medium solar activity

Total flux at NYC is 12.9 cm-2 h-1 for neutron energies > 10 MeV

Roughly 10 times higher at an altitude of 3000 meters

The neutron flux at a specific location can be calculated at

http://www.seutest.com

More information can be found in the JEDEC Standard:

JESD89A - Measurement and Reporting of Alpha Particle and Terrestrial

Cosmic Ray-Induced Soft Errors in Semiconductor Devices (October,

2006)

Variations in cosmic ray neutron flux at

selected locations

9.817312820
South Pole

Station

5.607862250Los Alamos

1.04103030Stockholm

3.138341770Johannesburg

0.98103210London

0.52103120Bangkok

Relative neutron

flux compared to

NYC, sea-level

Atm depth

 (g/cm2)

Elevation

(m)

Location

Indicative Figures for the

 Sensitivity of CMOS circuits

The raw soft error rate due to terrestrial high energy neutrons is in the

order of 0.001 FIT/latch for sensitive latches in bulk CMOS

SOI is 2 to 8 times less sensitive than bulk.

Source: Panel presentations at SELSE-2 available at http://www.selse.org

Research Questions

Will soft errors that reach the architected state (CPU register and

main memory) cause catastrophic failures in a brake-by-wire

system?

Can we reduce the probability of such catastrophic failures to a

tolerable level by software implemented error detection?

From presentation at SELSE-3 by Kellington et al., IBM POWER6 Processor Soft Error Tolerance Analysis

Using Proton Radiation, available at www.selse.org

Layout of IBM Power 6 Microprocessor

Please see presentation mentioned below

From presentation at SELSE-3 by Kellington et al., IBM POWER6 Processor Soft Error Tolerance Analysis

Using Proton Radiation, available at www.selse.org

Overall Derating of BZIP2 running on a POWER6 Processor

Please see presentation mentioned below

Brake-by-wire evaluation
Experimental setup

Brake system emulator

Two single board computers based on the

MPC565 from Freescale

Brake controller

Environment simulation model

Error injection:

GOOFI tool

Pre-injection analysis – injection in live data

Single bit-flips in registers and data memory

Brake

controller

node

Environment

simulation

node

CAN

Host PC

iC3000

USB

RS232

NEXUS

DB

GOOFI

winIDEA

iConnect

Error injection system

Brake system emulator

Program derating in brake-by-wire control loop
Maximum deceleration

Single bit-flips

injected into

CPU registers

No impact

40 %

Detected by

HW exception

Silent Data Corruption

33 %

24 %

Benign failure

Critical failure

15 %

85 %

Critical failures:

• Wheel locked for more than 0.03 s

• No brake force applied for 0.03s

3 %

Systems Hangs

Program derating 1/(0.24 * 0.15) = 13.9X

Brake-by-wire evaluation
 Classification of error impact

About 30% (1754 of 5802) of the bit-flips caused silent data corruptions

Memory errors are more likely to cause silent data corruptions

Total Memory Registers
0

10

20

30

40

50

60

Non-effective

Detected

Undetected

Brake-by-wire evaluation
Critical failures

About 15% (268 of 1754) of the errors that propagated to the output resulted in

a critical failure

Wheel being locked (41% of the critical failures)

Loss of braking (59% of the critical failures)

24%

76%

Brake-by-wire evaluation

 Critical failures

A majority of the critical failures were caused by

Errors injected into the stack pointer

Errors affecting the scheduler

Errors affecting the brake controller state

6%

6%

18%

20%

S

S

C

S

Brake-by-wire evaluation
Program-level error masking

About 47% of the injected errors were non-effective even though errors

were injected into live data

Memory errors were masked more often than register bit-flips

51% of the memory bit-flips were masked

40% of the register bit-flips were masked

Conclusions

High degree of program-level error masking

47% of the injected errors did not have an effect on the produced

brake command even though the bit-flips were injected into live data

4.6% of all injected errors resulted in critical failures

30% of the injected errors passed undetected

About 15% of these errors resulted in critical failures

Paper available at www.selse.org

On-going work

Implementation of software-based error detection mechanisms

Evaluate error coverage (program derating) of these mechanisms

Questions?

