IFIP WG 10.4 – 29/6/2007

The Regulation of Change in Air Navigation Services

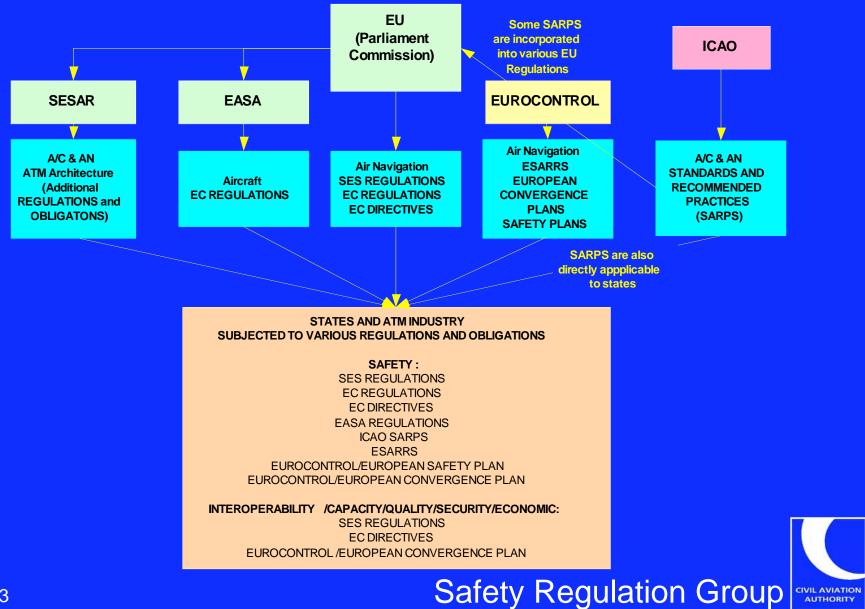
Some current issues

John Penny System Safety Specialist CAA (SRG)

Safety Regulation Group CIVIL AVIATION AUTHORITY

Single European Sky

Overview - organisations
 Oversight of change


 Risk Assessment & Mitigation

 Goal Based Regulation
 Safety & Interoperability

IFIP WG 10.4 – 29/6/2007

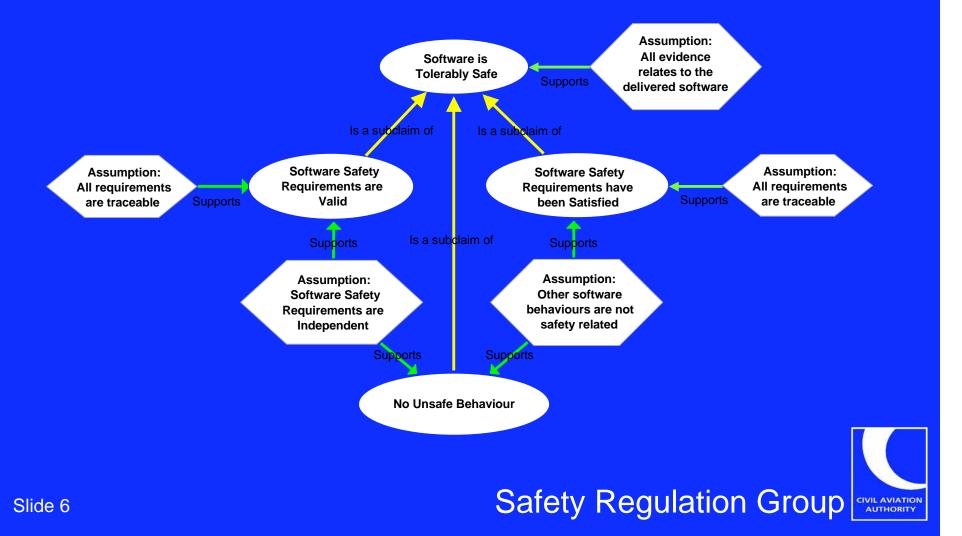
Organisations

Slide 3

Oversight of change

- ✤ Change Principle
 - Don't do it until you know its safe
- Risk Assessment & Mitigation
 - All parts of the system (People, procedures, Equipment) and the environment of operations
 - Quantitative risk/Cumulative risk
 - Argument
- Choices
 - Proportionate regulation (Hampton et al)
 - It is not a case of "to oversee or not to oversee" but "how much to oversee and when to oversee".
- ✤ Oversight criteria
 - Supplier competence/performance, Safety risk of change, Novelty/Size/Complexity of change
 - Objective measure of regulatory risk informs the depth and rigour of the oversight

Safety Regulation Group CIVIL AVIATION AUTHORITY


SES - Goal Based Regulation

- Notion of a single Target Level of Safety (TLS) for Air Navigation Services – 1.55.* 10⁻⁸ accidents with Air Navigation causes per a/c flight hour (ESARR 4)
- Service provider argues that safety risk is acceptable via a safety case Single goal – 'TLS will be met'
- Properties of the argument are prescribed
 - Safety objectives/Safety Requirements
 - Satisfaction of safety requirements
 - Traceability to service level functions
- No prescription on form of the argument
 - Freedom to innovate system structure/component detail/component source
 - Freedom to innovate arguments
- Constraints on scope and applicability
- ✤ ALARP ?

Safety Regulation Group CIVIL AVIATION AUTHORITY

Experience of GBR – SW01 Complete SW Safety Model

Experience of GBR – SW01

- SRG has been working with Air Navigation Service Providers to provide appropriate guidance:
 - COTS guidance available
 - Legacy guidance end of year
- Research is being performed on some underlying issues:
 - Apportionment of safety requirements
 - Use of architecture & verifiability of components
 - Verification of safety requirements using statistical test
 - Objectivity/confidence in combining arguments and evidence
 - Modular safety cases
- Overall, although the cultural change has proved challenging, the techniques developed show promise. The 'genie is out of the bottle' and there can be no going back.
- EC are currently transposing ESARR 6 (SW01) into EU regulations.

Safety Regulation Group CIVIL AVIATION AUTHORITY

Experience of GBR – SW01

- Product vs process: Predominance of process standards mitigates against argumentation.
 - Prescribed techniques do not necessarily lead to satisfaction of safety requirements – SIL x ≠ 10^{-y}
 - Saliency and strength of evidence not dealt with
 - Little experience of Argumentation
- Evidence: Both product and process evidence is needed
 - Uncertainty about provenance of evidence undermines confidence
 - Process arguments should be linked to items of product evidence not assumed to give blanket coverage

Argument chains / diverse reasoning:

- Product and process arguments are diverse. When combined, what is the confidence that the overall argument has satisfied the claim?
- Diversity exists independently in product and process evidence as well: proof, test, analysis. None are perfect. What is the confidence in the overall argument?
- Stopping conditions when have we assembled sufficient evidence

Experience of GBR – SW01

- Safety and the supply chain
 - Long chain of suppliers
 - Contracts aimed at mitigating business risk do not assist development for safety or safety assessment
 - Encourages a 'silo' mentality
 - Customers are unaware of the architecture of subsystems/components
 - A component delivered to satisfy a set of safety requirements ignores the behaviour present in the component but unspecified by the customer
 - Suppliers often use COTS or legacy components without having to declare them to the customer
 - Suppliers are often unaware of the constraints the environment can provide
- Improvements in component trustworthiness will assist but more open architectural development/analysis is still needed

Safety Regulation Group

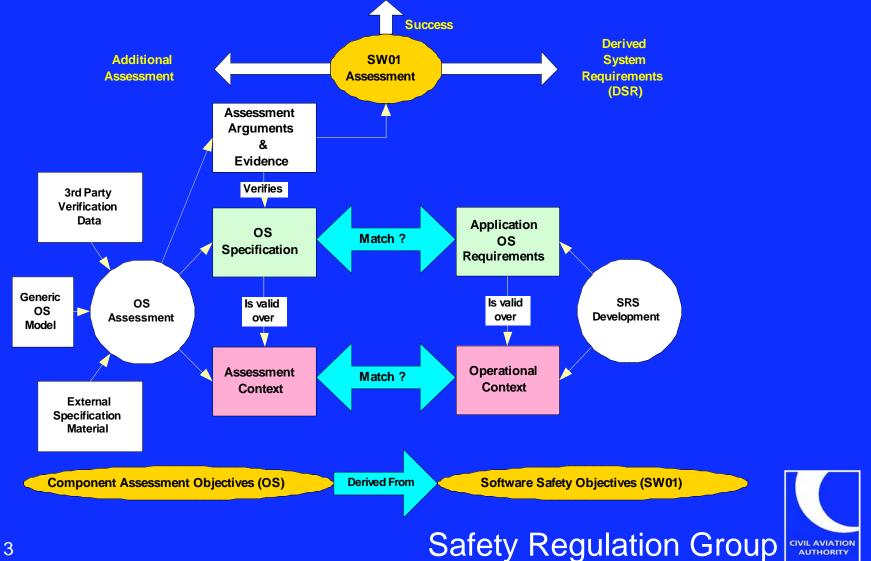
Safety & Interoperability

- SES interoperability is based on standard components and standard policies/practices
- Benefits of standard components
 - Efficiency of inter-working across systems
 - Economies of scale
 - Evidence of the integrity of implementation improves over time
- However 'component safety' is a non-sequitur
 - A component is neither safe nor unsafe
 - Components can be used safely or unsafely
- The property of concern for a component is its 'Trustworthiness' i.e. does its specification correctly declare *all* its behaviour

Interoperability - Systems

- Systems and procedures for airspace management.
- Systems and procedures for air traffic flow management.
 - TACT, TLPD, IFPS, ADEXP, OLDI
- ✤ Systems and procedures for air traffic services.
 - RDP, NAS, VCS,
- Communications systems and procedures.
 - Radios, CPDLC, Voice Comms, Data Comms
- Navigation systems and procedures.
 - NDB, VOR, DME
- Surveillance systems and procedures.
 - PMR, SSR, ASMGCS, MultiLat, ADSB, CPDLC, NODE
- Systems and procedures for aeronautical information services.
 - ATFN
- Systems and procedures for the use of meteorological information.
 - MARS

O CIVIL AVIATION AUTHORITY


Practical Trustworthiness?

- Safety assessment relies on knowing the complete behaviour of the component
- The complete behaviour of a moderately complex component is essentially limitless
- Components always do more than it says 'on the tin'
- Weaken add a constraint: Safety assessment relies on knowing the complete behaviour of the component in its environment of operation.
- Providing the component specification correctly describes all its behaviour in a completely defined environment and that environment exactly matches the environment of use then the component behaviour is completely known
- The fidelity of the context specification is as important as the fidelity of the behavioural specification
- Architecture is key: A well designed system provides the opportunity to constrain component context and allow trustworthy behaviour to be demonstrated within practically verifiable limits

Safety Regulation Group

Example: Assessing COTS against SW01

Slide 13

IFIP WG 10.4 – 29/6/2007

Mismatches

	SW01 Assessment	Action (SRS Development)
OS Specification	Complete match	None (Very Unlikely)
VS	More behaviour	Assess impact (CBA):
SRS Requirements	Less behaviour	None/DSRs/Look for another OS
	Covers	None
Assessment Context vs Operational Context	Partially covers	Assess impact (CBA)-Change: Application context (DSRs) OS context (Additional assessment)
	Does not cover	Look for another OS
Confidence in behaviour	Higher	None
VS	Equal	None
Confidence required of behaviour	Lower	Assess impact (CBA): DSRs/Additional Assessment
Slide 14	Safety Regulation Group	

Conclusions

What would a regulator like to see?

- That Safety Cases are primarily of use to the ANSP
- A balanced view of the role of product and process arguments
- Realistic safety requirements and realistic reliability claims for components
- Inclusion of the whole supply chain in the architectural design and analysis of a system
- Holistic systems engineering (human factors engineers?)
- Argumentation (a bit of philosophy!) to feature in engineering education
- Above all Think Safety!

Safety Regulation Group

IFIP WG 10.4 – 29/6/2007

Additional Slides

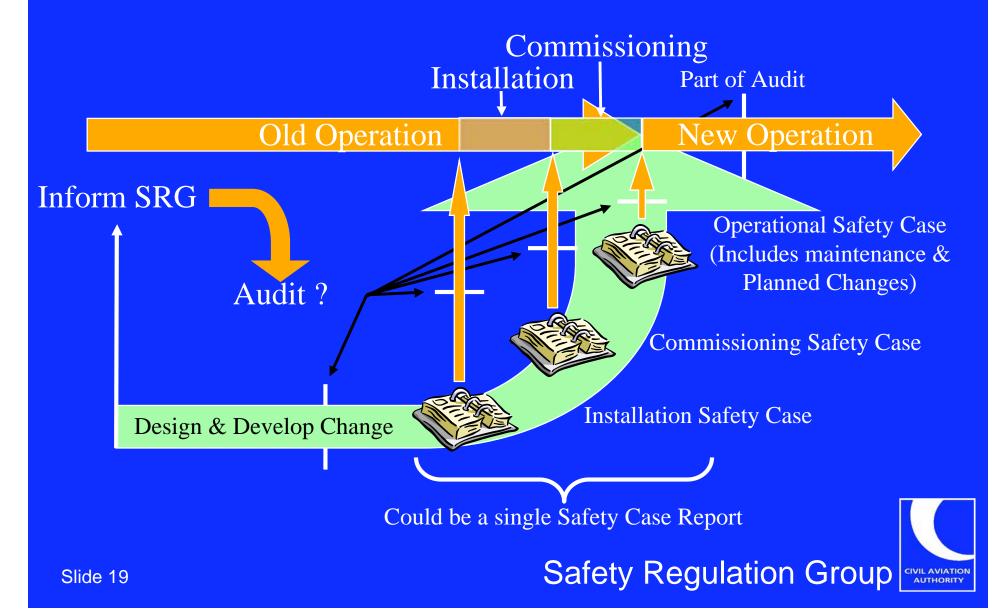
Expansion of Oversight slide

Slide 16

Change Principles

- The safety of the change should be predicted.
 (Do not make a change if you don't know how safe it will be.)
- ... before there is a chance of actual harm being caused (Do not introduce any part of the change before there are arguments and evidence that it will be safe i.e. produce a safety case before any physical change is made.)
- Any change should leave the service at least as safe as it was before
- Harm may be caused during: Installation, commissioning, operation (including planned changes), maintenance and de-commissioning. (If an operational change is required that is not covered in a safety case then it is considered as a new change – start again!) (Evidence for operation can be gathered during installation and commissioning e.g. the operational safety case does not need to be complete until just before operation begins.)

Note: These principles equally apply to establishing a service


Slide 17 i.e. going from no service to Bafery Regulations Group CIVIL AVIATION

Risk Assessment and Mitigation

- All parts of the system (people, procedures and equipment (hardware and Software)) are to be subjected to *quantitative risk* assessment (where practical) and mitigation.
- The environment and the organisation must also be considered for their impact on safety risk.
- Services and products used by the ATSP but not managed by him are also subject to Risk Assessment and Mitigation (RAM).
- Risk Assessment and Mitigation must consider all phases of operation from installation through to de-commissioning, including maintenance and operational changes.
- The risk assessment is to deal with *cumulative risk* i.e. the total risk of all the services offered must be tolerable.
- The ATSP is required to argue the safety of each change. (The Safety Case)

Fitting Oversight to the Change lifecycle

Oversight Choices

It must be the case that:

- Some changes are reasonably simple and require little oversight. Any oversight could be part of periodic audit
- Some changes are so 'risky' that the NSA should be involved from very early in the project and consequently will need to signify approval prior to operation.
- UK Government guidance is to move towards 'proportionate regulation': (Hampton et al)
 - risk assessment should be the foundation of all regulators' enforcement programmes;
 - there should be no inspections without a reason, and data requirements for less risky businesses should be lower than for riskier businesses;
- It is not a case of "to oversee or not to oversee" but "how much to oversee and when to oversee".
- How do we choose what and when to oversee?

Safety Regulation Group

Slide 20

Oversight Criteria

- Generally the criteria are drawn from the following categories:
 - Supplier competence
 - Supplier performance
 - Safety risk of change
 - Novelty of change
 - Size of change
 - Complexity of change
- An objective combination of these is referred to as a measure of Regulatory Risk and is used to inform the depth and rigour of the oversight.
- SRG is currently reviewing its measure of Regulatory Risk in the light of the SES changes

