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Motivation

In Brazil: system developers commonly use UML

notations for specification and design

Scenarios are popular as part of requirements

specification

Scenarios describe how users and system interact to

provide some service

Many scenarios are needed to describe a system

How to generate test cases based on these

scenarios?



Commonly used approaches

Since many scenarios are needed to describe a

system  how to combine these scenarios?

Approaches :

Sequence Diagram or Message Sequence Chart

Finite State Machines

Combination: Activity Diagrams and Sequence

Diagrams

Our approach: hierarchy of Activity Diagrams
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Use case description

The product is inserted into the database or the database remains unchanged.Post-conditions

E1. User not authentified
a.An exception corresponding to the error is thrown.
E2. Exception generated by the DB
a.The exception is captured by na exception handler, that must guarantee the data is inserted.

Exception Flow

A1. Mensagens de Alerta do Produto
The system exhibits error messages, showing the fields in the form that are wrong. Go to P2 to
allow the user to correct the errors.

Alternate Flow

P1. Check user identification
     If user is not valid then throw E1.
P2. Get product information
    The system shows a form to be filled with the information concerning the product.
P3. Validate product
      Includes use case Validate Product.
      If the product is not valid execute alternate flow A1.
P4. Confirm product insertion
The system exhibits a message asking the user to confirm the product insertion into the database.
If the user confirms, then go to P7 else the system cancels the insertion.
P7. Insert new productin the database
If problems with the insertion in the database then generate exception E2 else the use case
terminates successfully.

Main Flow

NoneInvariants

The user must be logged in and selected the “Insertion” option.Pre-conditions

ManagerActors

The goal of this use case is to provide a solution for the creation of new products in the data base.Description

Insert ProductUse case name



Activity diagram – Inter use cases
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Activity diagrams – intra use cases
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Test Case Generation
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Flow

Graph
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the graph

3. Generate 

script

(XML)

4. Build 

executable

model
5. Generate

test data
6. Complete

script

begin

...
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The test model
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Path-oriented test selection

Problems:

How to select paths?

Control flow based criteria (e.g. all edges,
all nodes)

How to select realizable paths?

Various call-return in a path

Realizable path: each call edge is
matched with its return edge
                    

Context sensitive search for a path

How to deal with loops to avoid infinite
number of paths?

Limit number of repetitions

Loop testing



The tools
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Some results

40 minAverage TC
execution time

142# test cases
(TC)

131# Failures530# ICFG nodes

37# fault revealing test
cases

441# ICFG edges

76# executed test
cases

27# UC

Test case executionTest case design



Conclusions
On-going work

Regression testing selection based on Activity Diagram

Testing process still in use  more measurements are being
performed

Systematic creation of surrogates (or proxies) for exception
handling testing (to be obtained from test cases)

Future work:

Implementation of other test criteria

Model validation (e.g. simulation)

Data flow and test data generation

Considering concurrency

various actors using the system



Thanks!


