
System testing from UML

diagrams

Eliane Martins

Institute of Computer – State University of Campinas (Unicamp)

eliane@ic.unicamp.br

52nd. Ifip WG 10.4 Meeting – Uphall, Scotland Jul 2, 2007

Harpia

Goal:

Development of web applications for the Tax

Department

Goal of the testing group:

Model-based system testing

Performability testing

Performance

Avaliability

Fault injection

Harpia

Goal:

Development of web applications for the Tax

Department

Goal of the testing group:

Model-based system testing

Performability testing

Performance

Avaliability

Fault injection

Motivation

In Brazil: system developers commonly use UML

notations for specification and design

Scenarios are popular as part of requirements

specification

Scenarios describe how users and system interact to

provide some service

Many scenarios are needed to describe a system

How to generate test cases based on these

scenarios?

Commonly used approaches

Since many scenarios are needed to describe a

system how to combine these scenarios?

Approaches :

Sequence Diagram or Message Sequence Chart

Finite State Machines

Combination: Activity Diagrams and Sequence

Diagrams

Our approach: hierarchy of Activity Diagrams

Modelling the system

Use cases

Use case

flows

scenarios

Activity diagrams

Intra-use case flow

Activity diagram

Inter-use case flow

Business

description

Use case description

The product is inserted into the database or the database remains unchanged.Post-conditions

E1. User not authentified
a.An exception corresponding to the error is thrown.
E2. Exception generated by the DB
a.The exception is captured by na exception handler, that must guarantee the data is inserted.

Exception Flow

A1. Mensagens de Alerta do Produto
The system exhibits error messages, showing the fields in the form that are wrong. Go to P2 to
allow the user to correct the errors.

Alternate Flow

P1. Check user identification
 If user is not valid then throw E1.
P2. Get product information
 The system shows a form to be filled with the information concerning the product.
P3. Validate product
 Includes use case Validate Product.
 If the product is not valid execute alternate flow A1.
P4. Confirm product insertion
The system exhibits a message asking the user to confirm the product insertion into the database.
If the user confirms, then go to P7 else the system cancels the insertion.
P7. Insert new productin the database
If problems with the insertion in the database then generate exception E2 else the use case
terminates successfully.

Main Flow

NoneInvariants

The user must be logged in and selected the “Insertion” option.Pre-conditions

ManagerActors

The goal of this use case is to provide a solution for the creation of new products in the data base.Description

Insert ProductUse case name

Activity diagram – Inter use cases

Identify

User

Insert

product

Update

product

Remove

product

Validate

product

manager

client

Search

product

«include»

«include»

«include»

Product Management

«use case»

Identify user

«use case»

Insert product

«use case»

Update product «use case»

Remove product

«use case»

Search product

initial node

final node

InvalidUser

exception edge

Control flow dependencies among use cases

(Manager view)

DBException

«user»

Select option

[option=SEARCH]

[else]

decision node

guard

Scenarios

+

Business

Description

«use case»

Insert product

Activity diagrams – intra use cases

«system»

Get product information

«use case»

Validate product

«system»

Save product in the database

«user»

Confirm insertion

[no]

[yes]

DBException

Activity: Insert Product

«pre-condition» User authentified and Insertion selected

«post-condition» Product inserted or database unchanged

«system»

Check user authentification

InvalidUser

«system»

Exhibit error message

[invalid]

[else]

«system»

Exhibit product form

«user»

Enter product information

«exception handler»

HandleDBException

Test Case Generation

1. Build a

Flow

Graph

2. Select paths

from

the graph

3. Generate

script

(XML)

4. Build

executable

model
5. Generate

test data
6. Complete

script

begin

...

end.

UML Activity Diagram

The test model

Call node

Return node

Call edge

Return edge

Path-oriented test selection

Problems:

How to select paths?

Control flow based criteria (e.g. all edges,
all nodes)

How to select realizable paths?

Various call-return in a path

Realizable path: each call edge is
matched with its return edge

Context sensitive search for a path

How to deal with loops to avoid infinite
number of paths?

Limit number of repetitions

Loop testing

The tools

Use case

specifications

Use case

flows

Business

rules

Activity diagrams

UML Modeling

Tool

XMI

XMI Graph

Builder
ICFG

Context Sensitive

Path

Selector

Test Case

Constructor

Paths

Traceability

Matrix
Test

sequence

Antares Test

Generation

Subsystem

Document

Tool

Tool

Module

Legend

Some results

40 minAverage TC
execution time

142# test cases
(TC)

131# Failures530# ICFG nodes

37# fault revealing test
cases

441# ICFG edges

76# executed test
cases

27# UC

Test case executionTest case design

Conclusions
On-going work

Regression testing selection based on Activity Diagram

Testing process still in use more measurements are being
performed

Systematic creation of surrogates (or proxies) for exception
handling testing (to be obtained from test cases)

Future work:

Implementation of other test criteria

Model validation (e.g. simulation)

Data flow and test data generation

Considering concurrency

various actors using the system

Thanks!

