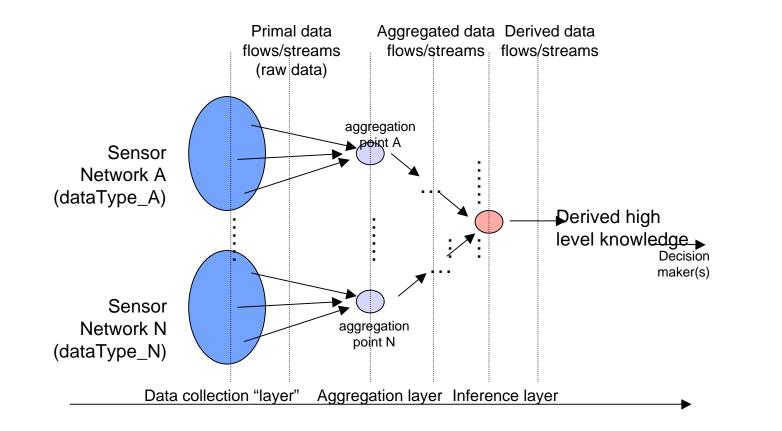
Assessing the Dependability of Sensor Network Information

Quality of Information (QoI) in Sensor Networks


Vic Thomas

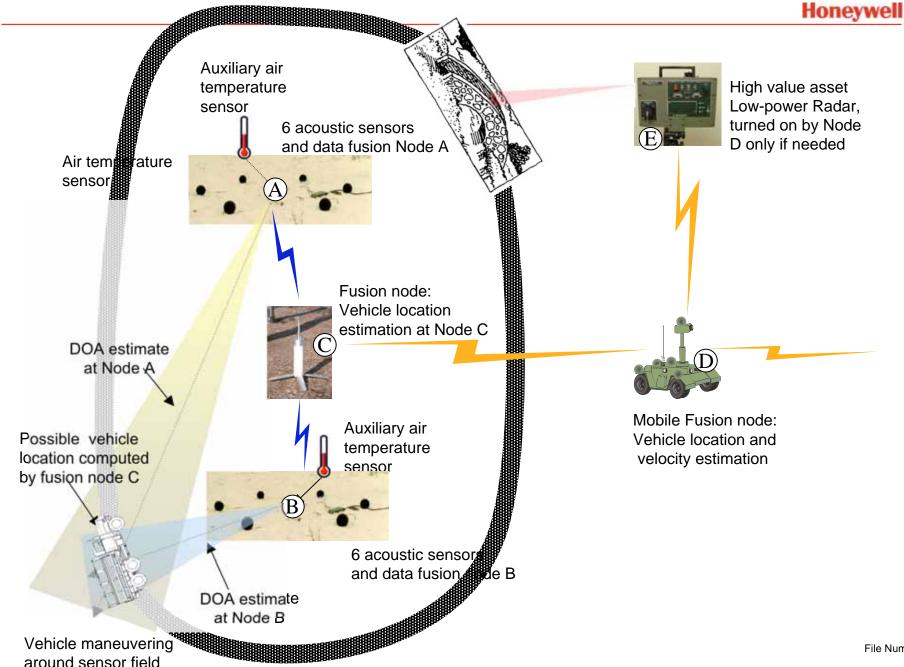
Edinburgh June 2007

- How much confidence can one place on information from a sensor network?
- Military sensor networks are notorious for falsepositives and false-negatives
 - Hastily deployed
 - Sub-optimal sensor placement
 - Imprecise knowledge of sensor locations
 - Adverse and unpredictable operating environments
 - Compromised sensors
 - Long-lived networks
 - Sensors going out of calibration
 - Accumulated errors in data fusion
 - Degraded operations as batteries run out
 - Detection algorithms tuned to decrease false-negatives
- All information must be considered actionable
 - No indication of the quality of the information (QoI)

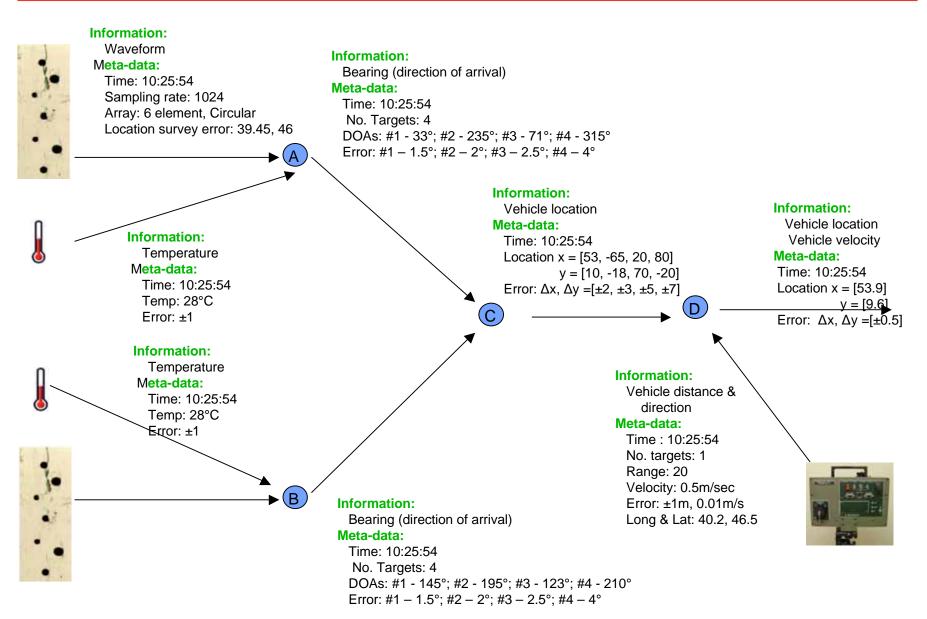
Project Objective

- Framework to describe, analyze and estimate the Qol delivered by a sensor network
 - Define QoI and mechanisms to describe QoI
 - Understand how Qol changes as it is collected, aggregated and transmitted at various logical levels

Honeywell


- Measure of how well a particular body of information conveys the true state of the world, modeled at a particular level of abstraction
 - Quality is different from Value

Qol computation


- Based on meta-data that describes the information flowing through the sensor network
 - Meta-data attribute selection based on model of the real-world
 - Meta-data attributes represent key dimensions of the model

Qol Illustrated

5

Data and Meta-Data Flows

Background

- UK Ministry of Defense and US Army Research Labs International **Technology Alliance in Network Sciences**
- Project is one of dozen being conducted by an **IBM-led consortium**
 - US and UK academia and research labs

nternational Rensedar ABBEING Massachusetts Aminerst A ABERDEEN

THE UNIVERSITY OF MORE TO THE UNIVERSITY Corregie Viellon

Technolo

UNIVERSITY OF CAMBRIDGE

BBN

PENNSIATE

mperial College

Project Activities

Honeywell

 Project structured around understanding contributors to QoI and their inter-relationships

Contributors to Qol

- Sensor characteristics and integrity
 - Resolution, drift, calibration, etc.

- Sensor trustworthiness

- Attacks on the sensing channel
- Data fusion
 - Fusion architecture. Lossy? Time consuming?

- Sensor network attributes

- Routing, power management, time synchronization
- Others, especially for non physics-based sensors (human intelligence)
 - To be investigated over the course of the project

Qol Representation and Analysis Framework

- Definition of Qol for sensor networks
- Framework the supports expression and computation of Qol
 - Extensions to SensorML?
 - Ontology to describe Qol attributes
 - Representation of the model against which Qol is being assessed
- Test using realistic applications
- Primary researchers
 - Chatschik Bisdikian (IBM)
 - Erol Gelebe (Imperial)
 - Jim Richardson & Vic Thomas (Honeywell)
 - Mani Srivastava (UCLA)
 - Raju Damarla and Tien Pham (ARL)

Possible Meta-Data For Temperature Sensor

```
<capabilities>
 <PropertyList>
  <property name="measurementProperties"></pro>
   <MeasurementCapabilities>
    <measureResolution>
     <swe:Quantity definition="~:temperature" uom="~:degreeCelsius">0.1
     </swe:Quantity>
    </measureResolution>
    <dynamicRange>
     <swe:QuantityRange definition="~:temperature" uom="~:degreeCelsius">-45 60
     </swe:QuantityRange>
    </dynamicRange>
    <accuracy>
     <swe:QuantityRange definition="~:accuracy" uom="~:percent">-0.5 0.5
     </swe:QuantityRange>
    </accuracy>
   </MeasurementCapabilities>
  </property>
  <property name="survivableRange"></property name="survivableRange">
   <Limits definition="~:survivableLimits">
    limit name="windSpeedLimits">
     <swe:QuantityRange definition="~:windSpeed" uom="~:metersPerSecond">0 175
     </swe:QuantityRange>
    </limit>
   </Limits>
  </property>
 </PropertyList>
</capabilities>
```

Qol and Sensor Network Services

- Year 1 focus on routing algorithms
 - Effect of routing schemes on Qol attributes and network performance
 - Delays, energy consumption
 - Bounds on routing algorithm performance
- Years 2 and 3: Effects of time-synchronization and localization accuracies on Qol
- Primary researchers
 - Erol Gelenbe (Imperial)
 - Mani Srivastava (UCLA)
 - Yunjung Yi and Vic Thomas (Honeywell)
 - Ping Ji (CUNY)

Qol and Select Routing Parameters

Number of Copies

Qol and Sensor Characteristics

Honeywell

Effects of sensors on Qol

Characterized and modeled sensor faults

- Offset faults: Calibration offset, spatial movement, sampling time shift
 - $f(t) = \beta O(t) + \gamma(t) + \varepsilon(t)$ with probability c
 - $f(t) = \gamma(t) + \varepsilon(t)$ with probability 1-c
- Gain faults: Calibration gain error
 - $f(t) = \beta 1(t) + \gamma(t) + \varepsilon(t)$ with probability c
- Variance degradation faults: Aging of sensors, variance of $\epsilon(t)$ increases over time
 - $f(t) = \gamma(t) + N(0,\sigma(t)2)$ with probability c
- Stuck-at-faults: Electrical or mechanical problems, obstructions etc.
 - $f(t) = \beta O(t)$ with probability c
- Developing techniques to detect and compensate for such faults
 - Univariate and multivariate techniques
- Primary researchers
 - Mani Srivastava (UCLA)
 - Dinkar Mylaraswamy (Honeywell)
 - Robert Young (DSTL)

Concluding Remarks

- Qol in sensor networks different from Qol notions in databases, web searches, etc.
- Qol research can provide a scientific basis for the design, deployment and operation of sensor networks
 - Other projects looking at using Qol to address redeployment