Improving Resilience of Critical Information Infrastructures against Complex Threats - an Approach based on Operational Models

Roland Rieke¹ rieke@sit.fraunhofer.de

Fraunhofer Institute for Secure Information Technology SIT, Darmstadt, Germany http://www.sit.fraunhofer.de/

IFIP WG 10.4, January 2007

¹Part of the work presented here was developed within the project SicAri being funded by the German Ministry of Education and Research.

CIIP vs. Complex Threats

Roland Rieke

Outline

- CIIP Process
- Example Scenario Modelling ICT Infrastructures
- Metwork Security Policies
- **5** Modelling Threats
- 6 Attack Graph Computation
- Assess Risks
- Countermeasures
- Problems
- Related work
- Outlook

CIIP vs. Complex Threats

Roland Rieke

Challenge: Protect Critical ICT Infrastructures

Process to guide the systematic protection Identify Determine Threats acceptable? Assess Analyse **Vulnerab**

- identify critical infrastructures
- determine the threats against those infrastructures
- analyse the vulnerabilities of threatened infrastructures
- assess the risks of degradation/loss
- apply countermeasures where risk is unacceptable

CIIP vs. Complex Threats

Roland Rieke

CIIP Process

Scope/Contributions of this work

Support this analytical CIIP process

- supply a formal framework to specify critical (ICT) network infrastructures and threats against them
- provide tool based methods for a systematic evaluation
- assist with finally determining exactly what really needs protection & which strategy and means to apply

CIIP vs. Complex Threats

Roland Rieke

CIIP Process

Example Scenario

Attack Graphs and Blended Threats

CIIP vs. Complex Threats

Roland Rieke

Example Scenario

Modelling critical (ICT) network infrastructures

Asset inventory

hosts

- products → vulnerabilities
 vulnerabilities
- services

trust relation between hosts

topology of network

IDS intrusion detection info

Asset prioritisation

criticality/worth of component

used for cost/benefit evaluations

CIIP vs. Complex Threats

Roland Rieke

Modelling ICT

Infrastructures

Vulnerability Model

Vulnerability - weakness of a system to a threat

- identifier Common Vulnerabilities and Exposures (CVE/CAN), MITRE Corporation
- preconditions credentials, ...
- range e.g locally/remotely exploitable
- impact type e.g. get unauthorised/user/root access
 - National Institute of Standards and Technology (NIST)
 - classification and attribution to CVEs
- severity reflects probability of exploitation
 - Common Vulnerability Scoring System (CVSS)
 - universal severity ratings for security vulnerabilities
 - US-CERT (Computer Emergency Response Team) - vulnerability metric

CIIP vs. Complex Threats

Roland Rieke

Modelling ICT Infrastructures

Vulnerability Template

E3: is target *T* vulnerable from source *S* by CAN_2003_0693?

V1: is target configured vulnerable? $(T, 'CAN_2003_0693') \in host_vulnerability_state,$

V2: is target currently running sshd? $(T, (('sshd', port), plvl_service)) \in host_service_state,$

V3: is target reachable from source on port ssh (policy permission)? Pol := $reachable((S, T, port), role_view_activity_seg(), role_def_seg())$ $Pol \neq \emptyset$,

V4: effects for attacker (get sshd privileges on target) $(T, p|v|_T) \leftarrow Attacker_p|v|_state$, $(T, max_access(plvl_service, plvl_T)) \hookrightarrow Attacker_plvl_state,$

V5: direct impact (target is no longer running sshd) $(T, (('sshd', port), plvl_service)) \leftarrow host_service_state$

Security Policy Enforcement

CIIP vs. Complex Threats Roland Rieke

Network Security Policies

Network Security Policy Model

Policy definition

Organisation Based Access Control (Or-BAC) model

roles	represent	subjects (hosts)
activities	represent	actions (service, e.g. ssh)
views	represent	objects (target)

Permissions

organisation \times role \times activity \times view \times context

Organisation

structuring

Context

e.g. default, emergency

CIIP vs. Complex Threats

CIIP vs. Complex

Threats

Roland Rieke

Modelling ICT

Infrastructures

Roland Rieke

Network Security **Policies**

Exploit Model

Exploit - special type of threat (¬ accident/malfunc.)

Vulnerability

exploits one or more vulnerabilities

Properties

- cost
- detectability

Additional impact

- on attacker (e.g. get confidential information)
- on host (e.g. shut down service)
- effects on network (e.g. disturbed connection)

CIIP vs. Complex Threats

Roland Rieke

Modelling Threats

Exploit Template

Exploit e.g. CAN_2003_0693 ssh exploit

Bind: attack from host S to host $T(S, T, p|v|_S, p|v|_T)$

E1: intruder knows exploit $Exploit \in Attacker_known_exploits_state$,

E2: selection of source and target host $(S, plvl_S) \in Attacker_plvl_state$, $rank(p|v|_S) \ge rank('user'),$ $(T, p|v|_T) \in Attacker_p|v|_state,$

E3: is target vulnerable from source $is_vulnerable(S, T, Exploit, plvl_T)$

E4: attacker gets all knowledge of host T $get_knowledge(T)$

E5: intrusion detection check ids_check(Exploit, S, T),

E6: assign cost benefit values cost_benefit(Exploit, T,' root')

E7: no additional impact in this example

Attacker Model

Attacker - subject/entity executing an exploit

Attacker profile

known exploits (e.g. assume the attacker uses only exploits for vulnerabilities with a severity above a given threshold)

known hosts, credentials, . . .

Attacker strategy

- select known exploit
- select source and target (monotonic benefit)
- apply exploit

Attacker collaboration

• the model allows multiple attackers (role based)

Attack Graph Computation

CIIP vs. Complex Threats

Roland Rieke

CIIP vs. Complex

Threats

Roland Rieke

Modelling Threats

Attack Graph Computation

Motivating Analysis Methods

CIIP vs. Complex Threats

Roland Rieke

Modelling Threats

CIIP vs. Complex Threats

Roland Rieke

Attack Graph Computation

Motivating Analysis Methods

CIIP vs. Complex Threats Roland Rieke

Attack Graph Computation

Security Risk Analysis

CIIP vs. Complex Threats

Roland Rieke

Assess Risks

Abstract Representations (alphabetic lang. hom.)

Threats Roland Rieke

CIIP vs. Complex

Assess Risks

Property Preserving Abstractions

abstraction (simple homomorphism) formal specification of abstract representation dynamic behaviour (LTS) of dynamic behaviour prove (too complex) prove properties of properties of LTS abstract behaviour ???

Abstract representation may hide restricted behaviour

CIIP vs. Complex

Threats

Roland Rieke

Assess Risks

Mapping (property preserving)

Minimal Automaton

Example Scenario: Risk Visualisation

CIIP vs. Complex Threats Roland Rieke CIIP Process Example Scenario Modelling ICT Infrastructures Network Security Policies Modelling Threats Attack Graph Computation Assess Risks Countermeasures Problems Related work Outlook

Example Scenario: Risk Visualisation

CIIP vs. Complex Threats

Roland Rieke

CIIP Proces

Madallina ICT

IIII astructures

Policies

Modelling Threat

Attack Graph

Assess Risks

Countermeasure

Problems

Related work

Outlook

Example Scenario: Risk Visualisation

CIIP vs. Complex Threats Using Predicates to define Abstractions Roland Rieke

CIIP vs. Complex Threats

Roland Rieke

CIIP Process

F 1 C

Modelling ICT

Network Security

Policies

Modelling Threats

Computation

Assess Risks

Countermeasure

Problems

Related wor

Outlook

Results

Step 2 - Compute the Abstract Representation

- In the current policy configuration attacks to the db_server are possible.
- Those attacks are based on exploits of the vulnerability CAN 2002 0649.
- They are utilising the policy rule (intern_hosts, any_role, net).

CIIP vs. Complex Threats

Roland Rieke

Assess Risks

Countermeasures

Step 4 - Adapt/Optimise the System Configuration

- uninstall the product that is hurt by the vulnerability CAN_2002_0649, or,
- restrict the internal hosts in their possible actions by replacing the policy (intern_hosts, any_role, net) with a more restrictive one.

CIIP vs. Complex Threats

Roland Rieke

Countermeasures

Analysis: Check Security Properties

Security property: Attacker can not access *db_server*

Counterexample (complete attack path)

(Attacker CAN 2002 0649 sql exploit (S = portal T = db server))

CIIP vs. Complex Threats

Roland Rieke

Countermeasures

Cost-Benefit Evaluation

Find max. attacker impact for a given set of exploits!

```
( Preprocessor_gen_vulnerabilities ( host_vulnerability_state = :: ) ) $(0 . 0)
                                 M-2 (($ 0 . 0))
     (Attacker select exploit (Attacker known exploits state = :: )) $(0.0)
                                  M-4 (($ 0 . 0))
(Attacker CAN 2003 0694 sendmail exploit (S = attacker T = portal)) $(4.20)
   ( Attacker_CVE_1999_0035_ftp_exploit ( S = portal T = nix_host ) ) $(2.2)
                                M-18 (($ 6 . 22))
  (Attacker CAN 2003 0715 dcom exploit (S = portal T = ms host)) $(4.10)
  (Attacker_CAN_2002_0649_sql_exploit (S = portal T = db_server)) $(4.45)
```

M-85 ((\$ 14 . 77)) (Attacker rsh login (S = portal T = nix host)) \$(1.6) M-122 ((\$ 15 . 83))

(Attacker_CAN_2003_0620_man_db_exploit (T = nix_host)) \$(3 . 10) M-140 ((\$ 18 . 93) DEAD)

CIIP vs. Complex Threats

Roland Rieke

Countermeasures

Survivability: Service Continuity and System's Countermeasures

Can client get answers from server if network is attacked ?

- add formal models of e-service and countermeasures
- example: db_server always tries to answer queries from host teleworker; assume sshd is running the portal ("ssh-tunnel")
- add system countermeasure, e.g. restart sshd on portal

CIIP vs. Complex Threats

Roland Rieke

CIIP Proces

Example Scenario

Modelling ICT

Network Security

Modelling Threats

Attack Graph

Access Ricks

Countermeasures

Problen

Related work

Outlook

State Space Explosion ? YES !!!

Solution concepts

- model only critical aspects of the system
- operate on higher level models (summarising, hide details, use abstract type)
- explore only interesting parts of the state space
- assume monotonic attacker behaviour.

- use property preserving abstractions
- compositional method
 - \rightarrow to-do item: apply in CIIP context

CIIP vs. Complex Threats

Roland Rieke

CIID Dynasas

Modelling ICT

Network Security

Martallian Thomas

A.: 1 G 1

Computation

Assess Risk

Countermeasures

Problems

Related work

Outlook

Related Work

Attack graphs

- Steven Noel, Sushil Jajodia, Paul Ammann et al, Center for Secure Information Systems, George Mason University
- Oleg Sheyner, Jeanette Wing et al, CMU
- Laura Swiler, Cynthia Phillips et al, Sandia National Laboratories, Albuquerque
- Igor Kotenko, Mikhail Stepashkin, SPIIRAS, St. Petersburg

Or-BAC

• Frédéric Cuppens et al.

ICT network modelling

• Benjamin Morin, Hervé Debar et al.

Asynchronous product automata

• Formal methods team, Fraunhofer-SIT

CIIP vs. Complex Threats

Roland Rieke

CIIP Process

Example Scenar

Modelling ICT

Network Security

Mariallian Thomas

Attack Graph

Countermeasu

Problems

Related work

Outlook

Related Work

Vulnerability assessments

MITRE Corporation: Common Vulnerabilities and Exposures (CVE/CAN) descriptions.

http://www.cve.mitre.org/

National Institute of Standards and Technology (NIST):

Vulnerability range and impact type assessments.

http://nvd.nist.gov/

Common Vulnerability Scoring System (CVSS): CVSS provides universal severity ratings for security vulnerabilities. http://www.first.org/cvss/cvss-guide.html

US-CERT: Another vulnerability metric.

http://www.kb.cert.org/vuls/html/
fieldhelp#metric

CIIP vs. Complex Threats

Roland Rieke

CIIP Process

Example Scenario

Modelling ICT

Network Security

Maria III and Thomas

Attack Graph

Access Ricks

C-----

Problems

Related work

Outlook

Related Work

Standards

BS 7799-3: Guidelines for information security risk management (2006)

ISO 27005: Emerging standard covering information security risk management (based on BS7799-3)

ISO 27004: Emerging standard covering information security

management measurement and metrics (not expected to be published in the immediate term)

EU FP6 projects

IRRIIS: Integrated Risk Reduction of Information-based

Infrastructure Systems

CRUTIAL: Critical Utility InfrastructurAL Resilience

Cl2RCO: Critical Information Infrastructure Research

Co-ordination Project

CIIP vs. Complex Threats

Roland Rieke

Related work

Apply Approach to Networked Infrastructures

Support critical networked infrastructure protection

model networked infrastructures. the threats. and the mutual dependencies

analyse interplay of component vulnerabilities & threats

reveal complex threat combinations, and cascading effects of malfunctions accidents

support systematic evaluation of possible solutions

raise risk awareness

aim at optimising security & protection

with given resources

attacks

CIIP vs. Complex

Threats

Roland Rieke

Outlook

Looking further ...

Towards robustness and attack resiliency in the context of dynamic environments

Self-adaptation to changing context - plasticity

monitor system behaviour, intrusions, anomalies complex event processing ⇒ situated risk evaluation policy-based automated threat response ⇒ impact minimisation • threat-response

multi-scale models organisational & ICT networks ⇒ integrated approach (complexity theory)

musca

Reasoning about incomplete or uncertain knowledge

- combine abstraction & plausibility/probability
- reasoning about unknown vulnerabilities

Develop metric for security/robustness

CIIP vs. Complex Threats

Roland Rieke

Outlook

Conclusions

Objective: Support analytical CIIP process

model based approach

to specify critical infrastructures and threats

analysis methods and tools

reveal complex threat combinations and support systematic evaluation of alternatives

complexity inherits state space explosion

solutions: clever modelling, abstraction, composition

generalisation and extensions

adaptation to other contexts,

self-adaptation, security/robustness metric

CIIP vs. Complex Threats

Roland Rieke

Outlook