
Automated Derivation of Application-

Aware Error Detectors

Zbigniew Kalbarczyk

K. Pattabiraman, G.P. Sagesse, N. Nakka, D. Chen, R. Iyer

Center for Reliable and High performance Computing

University of Illinois at Urbana-Champaign

www.crhc.uiuc.edu/DEPEND

Research Goals

Application-aware error detectors

Provide application-specific error detection at low-cost for high-

performance platforms

Limit error propagation to ensure crash-failure semantics

and reduce error detection latency

 Automatically derive fine-grained detectors to

Maximize error detection coverage

Minimize performance impact

 Implement in software / hardware

Approach

Determine where (program

location and variable) to place

detectors for best coverage

Instrument application to

observe values at

detector points and form

assertions based on

these values

Perform backward slicing

on application code from

the detector points to form

a minimum symbolic

expression

Dynamic

Analysis

Static

Analysis

Check assertions using a

combination of software and

hardware
Runtime

Reliability

&

Security

Placement

Fault Models

Hardware errors

Incorrect computation (not detected by ECC)

Soft errors in memory, registers and cache

Errors in instruction issue/decode

Software errors

Uninitialized values or incorrectly initialized values

Memory corruption, dangling pointers

Integer overflows, values out-of-bounds

Timing errors and race conditions

Where to Place the Detectors?

Choose variable to check and location to place the

detector

Starting Point: construct Dynamic Dependence Graph of

the program

Compute metrics to choose candidate points for detector

placement

e.g., fanout, lifetime

Evaluate detectors placed according to different metrics

 Fault-injections into data

Coverage for Multiple Detectors

(ideal detectors)

gcc95 benchmark

Coverage for crashes:

80% with 10 detectors,

97 % with 100 detectors

Coverage for fail-silence

violations (silent-data

corruptions)

 60% with 10 detectors,

 80 % with 100 detectors

 Benign errors detected

 4 % with 10 detectors,

10 % with 100 detectors

Placing detectors randomly on

hot-paths:

Need ~100 ideal detectors to

achieve 90% coverage

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Crash Coverage Vs Number of Detectors (gcc95)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Bin Size

D
e
te

c
ti

o
n

 P
ro

b
a
b

il
it

y

Fanouts

Lifetimes

Random

Execution

Propagation

Cover

Detector Classes

(a[i] – a[i-1]) == cConstantDiff

 min <= (a[i] – a[i-1]) <= maxBoundedDiff

min <= a[i] <= maxRange

(a[i] in Values), where Values is a set of possible valuesMulti-Value

(a[i] ==x and a[i-1]==y) or (a[i]==y and a[i-1]==x)Alternate

a[i] == cConstant

Example of Checking ExpressionClass Name

 A detector is a check on the value of a program variable memory

 location at a particular execution point in the program code

Experimental Setup

Steps in Evaluation:

Analysis: Detector placement and code instrumentation

Training: Learning detectors using representative inputs

Testing: Fault-injection in application data

Tool used for evaluation: modified version of Simplescalar

simulator (functional simulation)

Application Workload: Siemens suite

C programs with 100-1000 lines of code

Dynamic Detector Results

75%50%Manifested Errors

75% (tot_info)25% (schedule2)Fail-Silent Violations

65% (tot_info)45% (print_tokens)Program Crashes

Maximum CoverageMinimum CoverageType of Failure

False-Positives

Reliability and security Engine (RSE)

reconfigurable processor-level framework for reliability and security

Detectors implemented as an RSE module consisting of:

Shadow Register File - holds the state of the checked location

Assertion Table - stores the assertions’ parameters

Data-path - check assertions independently from processor

Hardware Implementation

Area overhead 30 %

Performance Overhead= 5.6 %

Approach Summary

Ongoing and Future Work

Dynamic Analysis: Extension to larger programs and multi-

valued detectors

Static Analysis: Concise representation of checking

expressions and compiling to H/W

Extension to Security: Signatures based on Information-

flow in a program

Formal methods of verification of derived detectors: Model

Checking/Theorem Proving

Integerated Hardware/Software framework with support

from the OS

