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Robots designed to work in human environments

LWR I 
(1992)

LWR II real (1999)

LWR III real (2002)

LWR II virtual (1998) LWR III virtual (2000)

Extreme light-weight arms and hands with 1:1 load-weight ratio  
• mobile manipulation
• interaction with unknown environments

KINEMEDIC (2005)
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Placing of Pedicle Screws
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Experimental Setup with LBR II

Robot
Linear guides with

marker arrays

Registration
of vertebra

Navigation
system

Linear guides with
marker arrays
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ROKVISS

~15 ms
delay
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Tele-Maintenance

Oberpfaffenhofen Space

Force-Feedback: min. 6 DoF
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„Affordable“, 
remotely controlled 
operations in space 
with mobile 
(freeflying)
robonauts for
•Servicing

and
•Exploration

Our  Vision
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Virtual Product Design: Assembly Scenarios

DLR LWR
as 6-DOF 
Haptic
Interface
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User Safety Concepts

• intrinsically safe robot design

• redundant, error detecting electronics

• redundant sensors

• ”dead-man-switch”, range check for measurements/commands,…

• robust, passivity based control algorithms

• collision detection/reaction with joint torque sensors

• direct control/limitation of exerted forces and torques

• soft robotics – compliance control

• collision avoidance with redundant kinematics

collision detection and reaction 

planning
controlcollision avoidance 

failure detection 
Hardware
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Light-Weight Design

47 Axes

4Weight< 10 kg

4Payload:  3 kg

DLR medical  robot

47 Axes 

4Weight:   13.5 kg

4Payload: 13.5 kg

DLR light-weight robot
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Measurement torque sensor vibration damping

Vibration Damping

Light-weight higher joint compliance vibrations
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Joint Flexibility – a Feature, not a 
Drawback?

YES, for compliance control:
•Safe interaction with humans
•Manipulation in unknown environments
•Haptics

(Khatib Lab, Stanford Univ.)

(Bicchi Lab, Univ. of Pisa)
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•Every motor used in bidirectional mode

•4 progressive elastic elements per joint

•direct drive to prevent gear side-effects

• tendon-driven

•motor unit
miniaturisable
to Ø 28mm

•at least 30N 
at fingertip

Antagonistic test joint setup
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Passively yielding joints

F
• rubber balls have progressive spring 

properties with nearly exponential 
characteristics

• the force with which the balls are 
squeezed determines the stiffness of 
the box

• adaptable characteristics through 
number and diameter of balls
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Design Overview
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Mechatronic Joint Design

(redundant)

Additionally: force-torque
sensor at the wrist
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User Safety Concepts

• intrinsically safe robot design

• redundant, error detecting electronics

• redundant sensors

• ”dead-man-switch”, range check for measurements/commands,…

• robust, passivity based control algorithms

• collision detection/reaction with joint torque sensors

• direct control/limitation of exerted forces and torques

• soft robotics – compliance control

• collision avoidance with redundant kinematics

collision detection and reaction 

planning
controlcollision avoidance 

failure detection 
Hardware
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Strategy

Goals:

Key
Technology:

Starting
Point:

Control
approach:

Programmable
stiffness

(„Soft Robotics“)

Movement
accuracy

Safe human-robot
interaction

Joint torque
sensor

Position control with
active

vibration damping

Light-weight robot
with elastic joints
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Flexible Joint Robot

State vector:
f

Δx

{

xdext
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Strategy

Goals:

Key
Technology:

Starting
Point:

Control
approach:

Programmable
stiffness

(„Soft Robotics“)

Movement
accuracy

Safe human-robot
interaction

Joint torque
sensor

Position control with
active

vibration damping

Light-weight robot
with elastic joints
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Position Control with Full State 
Feedback

4global asymptotically stable (Lyapunov-Analysis) 
4passive => robust with respect to parameter uncertainties

q·

Passive Environment
τext

θ,θ·

Passively controlled actuator 1 Passive rigid
robot dynamics

Control

Control

Model error may cause performance degradation
but not in instability
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Passivity

- Power

α−>∫
t T dttytu
0

)()(

)()( tytuT

0>∃α

u(t) y(t)
dynamical 

system

System is passive, if

The energy which can be extracted 
from the system is bounded
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User Safety Concepts

• intrinsically safe robot design

• redundant, error detecting electronics

• redundant sensors

• ”dead-man-switch”, range check for measurements/commands,…

• robust, passivity based control algorithms

• collision detection/reaction with joint torque sensors

• direct control/limitation of exerted forces and torques

• soft robotics – compliance control

• collision avoidance with redundant kinematics

collision detection and reaction 

planning
controlcollision avoidance 

failure detection 
Hardware
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Quantization of Severity of Impact 
Injury

No standards for robotics

Some “borrowed” indices
Head
• Head Injury Criterion - HIC (car crash tests)
• Maximum Impact Power
• Maximum Mean Strain Criterion
• Vienna Institute Index, Effective Displacement 

Index, Revised Brain Model

mean acceleration

!?
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Collision Detection
f

Δx

{

xdext measured signals:

collision torque
observable:

gearbox friction torque / actuator failure

computed signals:
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Observer Implementation

- generalized momentum

Linear resulting observer dynamics:

Ideal situation (no noise)

(De Luca et. al., 2005)
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Reaction Strategies

•strategy 1: stopping the trajectory

•strategy 2: gravity compensated torque mode

•strategy 3: impedance control mode using 

•strategy 4: admittance control mode using
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Impact Tests



33

Results on Balloon Impact

4 residual & velocity on joint 4 for different reaction strategies

impact at 10°/s with coordinated joint motion

no reaction
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Results on Balloon Impact (cont’d)

• residual & velocity on joint 4 for different reaction strategies

impact at 100°/s with coordinated joint motion
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Results on Dummy Head Impact

• approaching at 30°/s with each joint
• residual gains      = diag{25}

joint 1

2 ms

joint torque

observer

0/1 detection

acceleration

HIC < 400

HIC approaches critical 
value at 70°/s
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Strategy

Goals:

Key
Technology:

Starting
Point:

Control
approach:

Programmable
stiffness

(„Soft Robotics“)

Movement
accuracy

Safe human-robot
interaction

Joint torque
sensor

Position control with
active

vibration damping

Light-weight robot
with elastic joints
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Cartesian Stiffness Control

f

Δx

{ xd

___
f xd

K
k

D
k

M
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Joint
task

0.33ms

Slow Cart. 
Task

(6-10ms)

Fast Cart. 
Task (1ms)

Cartesian Compliant Behavior

Impedance controlStiffness controlAdmittance control

Force Controller 

Inverse kinematics for
redundant, nonholonomic

systems 

Projection of
stiffness & damping:

Cartesian to joints
null-space to joints 

Cartesian
stiffness & damping 

matrices

Variable gains for 
joint stiffness control
& vibration damping 

Robot dynamics 

Joint space 

Operational space

Desired Torque
computation

Position
control 

Torque
control

Impedance
control 

1ms bus

Direct
kinematics

Jacobian

k=max k=0
Joint
task

0.33ms

Slow Cartesian
Task
(6ms)

Fast Cart. 
Task (1ms)

Cartesian Compliant Behavior

Impedance controlStiffness controlAdmittance control

Force Controller 

Inverse kinematics for
redundant robots

Projection of
stiffness & damping:

Cartesian to joints
null-space to joints 

Cartesian
stiffness & damping 

matrices

Variable gains for 
joint stiffness control
& vibration damping 

Robot dynamics 

Joint space 

Operational space

Desired Torque
computation

Position
control 

Torque
control

Impedance
control 

1ms bus

Direct
kinematics

Jacobian

k=max k=0
State vector:

θ,θ,τ,τ
• •
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Application: Piston Insertion
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Cartesian Impedance Controller

4Shaping the potential energy  - collocated feedback
– Asymptotic stabilization around xd ( )
– Implementation of the desired compliance relationship (      )

– Feedback of 

4Shaping of the kinetic energy - noncollocated feedback
– Damping of vibrations => increased performance
– Feedback of               (torque controller)

Two step concept for noncollocated systems:

=> Full state feedback
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Main Idea for Energy Shaping
f

Δx

{

xdext
•At equillibrium:

1 to 1 correspondence 

Between     and 

A controller based on            instead of 
• is collocated           passivity

• satisfies static requirements related to q:
- desired equilibrium point 
- desired stiffness
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Conditions for Energy Shaping
In any equilibrium position q=q(θ)

d

k
θ−fixed

q1

if k not too small

q2 -second
equilibium

One turn

For very small k:

Extendable to a broad class of noncollocated E-L systems

Uniqueness of the solution

Invertibility

For a general potential energy U

q(θ)
diffeomorphism
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motor dynamicsPassive structure

Cartesian Impedance Control

τmu
Bθτ,τ

torque
control

rigid robot 
dynamics 

d

k

Passive
environment

τa

τext

q
B

xd

impedance
law

kinematics
dynamics

g(q)

x(q)

J(q)
θ

h-1(θ)

q(θ)

Unified approach for torque, position and 
impedance control on Cartesian and joint level
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Torque Control
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Impedance Control



47



48

User Safety Concepts

• intrinsically safe robot design

• redundant, error detecting electronics

• redundant sensors

• ”dead-man-switch”, range check for measurements/commands,…

• robust, passivity based control algorithms

• collision detection/reaction with joint torque sensors

• direct control/limitation of exerted forces and torques

• soft robotics – compliance control

• collision avoidance with redundant kinematics

collision detection and reaction 

planning
controlcollision avoidance 

failure detection 
Hardware
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Inverse Kinematics for Redundant 
Robots

4 Constrained optimization
– Singularity avoidance 
– Multiple constraints 
– Nonlinear mobile systems

4 Interactivity 
4 Reactivity 
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Collision Detection Using 
Redundancy
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Collision Detection Using 
Redundancy


