

#### **Safe Physical Human-Robot Interaction**

Alin Albu-Schäffer

DLR – German Aerospace Center Institute of Robotics and Mechatronics

# Robots designed to work in human environments

Extreme light-weight arms and hands with 1:1 load-weight ratio
mobile manipulation

interaction with unknown environments





LWR III real (2002)







LWR II virtual (1998)



LWR II real (1999)







# **Placing of Pedicle Screws**









### ROKVISS

10

# ~15 ms delay









#### **Tele-Maintenance**



Oberpfaffenhofen

Space

Force-Feedback:

min. 6 DoF



# Our Vision

"Affordable",
remotely controlled
operations in space
with mobile
(freeflying)
robonauts for
•Servicing
and

•Exploration













- redundant sensors
- "dead-man-switch", range check for measurements/commands,...
- robust, passivity based control algorithms
- collision detection/reaction with joint torque sensors
- direct control/limitation of exerted forces and torques
- soft robotics compliance control
- collision avoidance with redundant kinematics



# **Light-Weight Design**

#### **DLR medical robot**

- 7 Axes
- Weight< 10 kg</p>
- Payload: 3 kg





# DLR light-weight robot

- ▶ 7 Axes
- Weight: 13.5 kg
- Payload: 13.5 kg



## **Vibration Damping**

Light-weight  $\implies$  higher joint compliance  $\implies$  vibrations Measurement  $\implies$  torque sensor  $\implies$  vibration damping





# Joint Flexibility – a Feature, not a Drawback?

#### YES, for compliance control: Safe interaction with humans Manipulation in unknown environments •Haptics Parallel-Distributed Inner DOFs Actuation (Parallal-Distributed Single Actuator Actuation) Outer DOFs Single Actuators (Khatib Lab, Stanford Univ.) (Bicchi Lab, Univ. of Pisa)



#### Antagonistic test joint setup



- Every motor used in bidirectional mode
- 4 progressive elastic elements per joint
- direct drive to prevent gear side-effects
- tendon-driven
- motor unit miniaturisable to Ø 28mm
- at least 30N at fingertip





# Passively yielding joints

# ↓ F



- rubber balls have progressive spring properties with nearly exponential characteristics
- the force with which the balls are squeezed determines the stiffness of the box
- adaptable characteristics through number and diameter of balls



**Design Overview** 





# **Mechatronic Joint Design**





- "dead-man-switch", range check for measurements/commands,...
- robust, passivity based control algorithms
- collision detection/reaction with joint torque sensors
- direct control/limitation of exerted forces and torques
- soft robotics compliance control
- collision avoidance with redundant kinematics





#### **Flexible Joint Robot**



State vector:

$$oldsymbol{x}^T = \{ \dot{oldsymbol{ heta}}, oldsymbol{ heta}, \dot{oldsymbol{ au}}, oldsymbol{ au} \}$$

 $egin{aligned} M(q)\ddot{q}+C(q,\dot{q})\dot{q}+g(q)&=& au+DK^{-1}\dot{ au}+ au_{ext}\ B\ddot{ heta}+ au+DK^{-1}\dot{ au}&=& au_m\ oldsymbol{ au}_a&=& au_m \end{aligned}$ 





### Position Control with Full State Feedback

- global asymptotically stable (Lyapunov-Analysis)
- passive => robust with respect to parameter uncertainties



# Model error may cause performance degradation but not in instability



**Passivity** 



# System is passive, if $\exists \alpha > 0$ $\int_{0}^{t} u^{T}(t) y(t) dt > -\alpha$

The energy which can be extracted from the system is bounded





collision avoidance with redundant kinematics



# Quantization of Severity of Impact Injury

## No standards for robotics

Some "borrowed" indices

Head

- Head Injury Criterion HIC (car crash tests)
- Maximum Impact Power
- Maximum Mean Strain Criterion
- Vienna Institute Index, Effective Displacement Index, Revised Brain Model

$$\text{HIC} = \max_{(t_{2,v} - t_{1,v})} \left( (t_{2,v} - t_{1,v}) \cdot \left( \frac{1}{t_{2,v} - t_{1,v}} \int_{t_{1,v}}^{t_{2,v}} \ddot{\mathbf{x}}_{M_{av}} \mathrm{d}t \right)^{\left(\frac{5}{2}\right)} \right) \le$$

1000



#### **Collision Detection**



gearbox friction torque / actuator failure



**Observer Implementation** 

(De Luca et. al., 2005)

$$\hat{\boldsymbol{\tau}}_{ext} = \boldsymbol{K}_{I} \left[ \boldsymbol{p}(t) - \boldsymbol{p}(0) - \int_{0}^{t} \dot{\hat{\boldsymbol{p}}}(t) \, \mathrm{d}\boldsymbol{s} \right]$$

 $oldsymbol{p}(t) = oldsymbol{M}(oldsymbol{q}) \dot{oldsymbol{q}}$  - generalized momentum

$$\dot{\hat{\boldsymbol{p}}}(t) = \boldsymbol{\tau} - \boldsymbol{C}^T(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}} - \boldsymbol{g}(\boldsymbol{q}) - \hat{\boldsymbol{\tau}}_{ext}$$

Linear resulting observer dynamics:

$$\dot{\hat{oldsymbol{ au}}}_{ext}+oldsymbol{K}_{I}\hat{oldsymbol{ au}}_{ext}=oldsymbol{K}_{I}oldsymbol{ au}_{ext}$$

Ideal situation (no noise)  $K_I \to \infty \implies \hat{\tau}_{ext} \approx \tau_{ext}$ 



**Reaction Strategies** 

- •strategy 1: stopping the trajectory
- •strategy 2: gravity compensated torque mode
- •strategy 3: impedance control mode using  ${m au}_{ext}$
- •strategy 4: admittance control mode using  ${m au}_{ext}$



#### **Impact Tests**



Criteria And Control Structures For A Safe Human-Robot Interaction





## **Results on Balloon Impact**

residual & velocity on joint 4 for different reaction strategies



impact at 10°/s with coordinated joint motion



### Results on Balloon Impact (cont'd)

• residual & velocity on joint 4 for different reaction strategies



impact at 100°/s with coordinated joint motion



## **Results on Dummy Head Impact**

- approaching at 30°/s with each joint
- residual gains  $K_I = \text{diag}\{25\}$



joint torque





#### **Cartesian Stiffness Control**



#### $f = M\Delta \ddot{x} + D_k \Delta \dot{x} + K_k \Delta x$





#### **Application: Piston Insertion**

# **Teaching by Demonstration**





# **Cartesian Impedance Controller**

Two step concept for noncollocated systems:

- Shaping the potential energy collocated feedback
  - Asymptotic stabilization around  $x_d$  ( $au_{ext} = 0$ )
  - Implementation of the desired compliance relationship ( $m{ au}_{ext} 
    eq m{0}$ )
  - Feedback of  $oldsymbol{ heta}, oldsymbol{ heta}$
- Shaping of the kinetic energy noncollocated feedback
  - Damping of vibrations => increased performance
  - Feedback of  $au, ilde{ au}$  (torque controller)

=> Full state feedback



## Main Idea for Energy Shaping



•At equillibrium: 1 to 1 correspondence  $\bar{q}(\theta)$ Between  $\theta$  and q

A controller based on  $\bar{q}(\theta)$  instead of q

- is collocated  $\rightarrow$  passivity
- **satisfies** static requirements related to *q*:
  - desired equilibrium point
  - desired stiffness



Extendable to a broad class of noncollocated E-L systems



# **Cartesian Impedance Control**

Unified approach for torque, position and impedance control on Cartesian and joint level





### **Torque Control**





![](_page_45_Picture_0.jpeg)

### **Impedance Control**

![](_page_45_Picture_2.jpeg)

![](_page_45_Picture_3.jpeg)

![](_page_46_Picture_0.jpeg)

![](_page_46_Picture_1.jpeg)

![](_page_47_Figure_0.jpeg)

- "dead-man-switch", range check for measurements/commands,...
- robust, passivity based control algorithms
- collision detection/reaction with joint torque sensors
- direct control/limitation of exerted forces and torques
- soft robotics compliance control
- collision avoidance with redundant kinematics

# 

## Inverse Kinematics for Redundant Robots

![](_page_48_Picture_2.jpeg)

- Constrained optimization
  - Singularity avoidance
  - Multiple constraints
  - Nonlinear mobile systems
- Interactivity
- Reactivity

![](_page_48_Picture_9.jpeg)

![](_page_49_Picture_0.jpeg)

### Collision Detection Using Redundancy

![](_page_50_Picture_0.jpeg)

### Collision Detection Using Redundancy