A Look at Dependability and Synchrony in Distributed Mobile Robotic Systems: Adding Some Pragmatism to Theory

Xavier DÉFAGO

1) School of Information Science, Japan Adv. Inst. of Science & Tech. (JAIST)
2) PRESTO, Japan Science & Tech. Agency (JST)
Context / Motivation

- **Context**
 - Given: Multiple robots
 - Obtain: Single system

- **Requirements**
 - Deterministic solutions
 - Use little / no infrastructure
 - Weak / weaker / weakest assumptions

- **Characteristic**
 - Start from theory, move toward practice
Outline

- **Part I: Gathering problem**
 - Limited visibility
 - No communication
 - Compasses

- **Part II: Collision avoidance**
 - No visibility
 - Limited communication

- **Conclusion**
PART I

with:

• Samia Souissi (JAIST)
• Masafumi Yamashita (Kyushu Univ.)
Motivation

• **Context**
 • Autonomous robots
 • No infrastructure
 • No common knowledge (e.g., coordinate system)

• **Question**
 • What are the fundamental limits to robust coordination?
Gathering Problem

- **Gathering**
 - Set of robots located arbitrarily
 - ➔ All robots gathered at same location

- **Provides**
 - Agreement on common origin

- **Desired property**
 - Self-stabilization
System Model

- **Environment**
 - Euclidean plane
 - No landmarks
 - No obstacles
 - No boundaries

- **Robots**
 - Location: single point
 - Collocation possible; “no collisions”
 - Own coordinate system:
 - origin, directions, unit distance
System Model

- **Interactions**
 - **Vision**: get position of robots
 - No explicit communication
 - No global coordinates

- **Activations**
 - Cycle: *Look - Compute - Move - ...Sleep...*
 - Deterministic algorithm
 - **Oblivious** (stateless)
 => self-stabilizing
System Model

- Two Variants
 - Semi-Synchronous
 - Asynchronous
Semi-Synchronous

- **Activation Schedule**
 - **Atomic cycle:** *(Look - Compute - Move)*
 - **Parallel:** see same thing
 - **Sequential:** one see preceding movement
Gathering Problem

- **Goal**
 - From any configuration,
 - Eventually, all robots gather at single location

- **Difficulty: simple illustration**
 - Two robots A, B in semi-synchronous model
Asynchronous

- **No synchronization**
- Can be seen while moving
- Cannot anticipate others’ moves
Convergence vs. Formation

- **Convergence**
 - Solve problem asymptotically
 - Trivial to achieve (e.g., barycenter)

- **Formation**
 - Solve problem deterministically
 - Difficult to achieve
 - Need to break symmetry
Gathering w/Limited Visibility

- **Assumption**
 - Visibility graph connected initially

- **Safety**
 - Keep visibility graph connected

- **Why?**
 - Partition unrecoverable
 - Oblivious robots
 - => forget about each other’s existence
 - => gathering at more than one point (invalid)
Gathering Possible

- **...in Semi-synchronous model**
 - proved in [SY99]
 - **Non-oblivious** robots
 - **Full** visibility

- **...in Asynchronous model**
 - proved in [FPSW05]
 - **Oblivious** robots
 - **Limited** visibility
 - **with compass** (i.e., shared orientation)
Gathering w/Compass

[FPSW05]

- **Role**
 - Break symmetry

- **Idea (2 robots)**
 - Other robot to NW±90°:
 - Wait
 - Otherwise
 - Move to other robot
Question

[SDY06]

What if compasses are unreliable?

Especially

- Transient failures
- Interference
- Stabilization
Unreliable Compasses

- **Compass**
 - Function of (time, robot) -> direction

- **Perfect compasses**
 - Consistency: all compasses point to the same direction
 - Stability: compasses never change

- **Eventually-consistent Compasses**
 - There is a time (unknown) after which compasses are: consistent & stable
Unreliable Compasses

- Chaotic period
 - Safety: OK; Progress: *maybe*
- Good period
 - Safety: OK; Progress: OK
Unreliable Compasses

- Practically speaking...
 - Need good periods “long & frequent enough”
 - Algorithm tolerates unbounded number of transient failures
Gathering w/Unreliable Comp.

<table>
<thead>
<tr>
<th></th>
<th>Perfect Compass</th>
<th>Eventual Compasses</th>
<th>No Compass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynch. Model</td>
<td></td>
<td></td>
<td>Impossible</td>
</tr>
<tr>
<td></td>
<td>$n \geq 4$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$n = 2, 3$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi-synchronous Model</td>
<td></td>
<td></td>
<td>[SY99]</td>
</tr>
<tr>
<td></td>
<td>$n \geq 3$</td>
<td></td>
<td>Impossible</td>
</tr>
<tr>
<td></td>
<td>$n = 2$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
- [FPSW05]
- [SDY06]
Gathering w/Unreliable Comp.

- **Algorithm**
 - Use perfect compasses
 - or
 - Use semi-synchrony

- **Impossible case**
 - Asynchronous, n >= 4
 - Algorithm [SDY06] => breaks visibility
 - Best possible: Admits deadlock situations
Some Future Work

- **Unreliable compasses**
 - with bounded imprecisions

- **Faulty robots**
 - Byzantine robots

- **Dynamic problems**
 - Flocking, etc...
PART II

with:

• Julien Cartigny (Univ. Limoges, France)
• Nak Young Chong (JAIST)
• Rami Yared (JAIST)
• Matthias Wiesmann (JAIST)
Motivating Context

Equipment
- 4 Pioneer-3 robots
- Laptop
- Wireless (WiFi; bluetooth)
- Sonar (180°, 6-7m)

Objective
- Group movement without collisions

Desired Properties
- Decentralized solution
- Fault-tolerance
- Fail-safe behavior
Path Reservation

- **Robot knows**
 - own destination / path
 - own location
 - information in messages

- **Does NOT know**
 - others’ destinations
 - others’ location
 - others’ velocity
 - communication delays
• **Collision-free protocol**
 - Ensure no-collision
 - Fail-safe behavior

• **Local subsystem**
 - Individ. robot movements
 - Detect inert obstacles
 - Use sonars
Assumptions

- **Real-time**
 - Local subsystem
 - Sensors (sonars)
 - Motor control code

- Bounded Errors
 - Positioning system
 - Robot movement
 - Collision-free protocol
 - Motion planning
 - Network

- RT guarantees
System Model

- **Robots**
 - Have footprint
 - No vision
 - Ad hoc wireless communication

- **Positioning System**
 - Global x-y referential
 - Robot can query asynchronously
 - Robots get own position

- **Communication**
 - Time-free
 - Two models: full, ad hoc
Path Reservation

- **Idea**
 - Similar to database locking

- **Primitives**
 - *acquire*: request lock on a zone
 - *release*: release zone

- **Benefits**
 - Prevent collisions
 - Provides some information on location
Path Reservation

- Desired properties
 - Mutual exclusion between conflicting requests
 - No starvation of requests (unless deadlock)
Anatomy of a Zone (errors)

• Errors
 • ε_{gps}: pos. system
 • ε_{tr}: translational movement
 • ε_{θ}: rotational movement (incl. sensors)
Model 1: Fully connected

● **Model**
 ● All robots “know” each other
 ● All robots can communicate
 ● Communication is reliable asynchronous

● **Purpose**
 ● Few robots
 ● Limited area

● **Benefit**
 ● Simple, fault-tolerant solution
Model 1: Reservation

- **Idea**
 - Use **Total Order Broadcast** protocol

Total Order Broadcast

- Broadcast primitive
- Hosts deliver same sequence of messages

Ordinary Broadcast

```
p1
p2
p3
m1
m2
```

Atomic Broadcast

```
p1
p2
p3
m1
m2
```
Model 1: Reservation

- **Idea**
 - Use of Total Order Broadcast

- **Advantages**
 - Well-known requirements
 - Many algorithms (see survey [DSU04])
 - Fault-tolerant solutions
 (e.g., with unreliable FDs & maj. correct hosts)

- **Synchrony assumption**
 - E.g., unreliable failure detectors
 - FAIL => liveness violation
Model 1: Protocol

- **To move**
 - Get own position
 - Compute zone Z
 - TO-bcast(Request, Z)

- **When TO-deliver (Request, Z)**
 - If conflict => put Z in pending requests
 - Else lock(Z)

- **When lock(Z)**
 - Move along Z
 - Wait until destination reached
 - Get own position; compute new pre-zone
 - R-bcast(Release, Z - new pre-zone)
Model 1: Drawbacks

- **Limited scalability**
 - Protocol involves all robots
 - ... regardless of actual location

- **Limited flexibility**
 - Requires initial knowledge of all robots

- **Energy consumption**
 - Requires coverage of whole area
 (or supplemented by routing)
Model 2: Ad hoc

[YCDW06]

- **Limited communication range**
 - Known to all robots: D
 (NB: D can be minimum of all ranges)

- **Asynchronous**
 - No bounds on message delays
 (e.g., because of retransmission).

- **Neighborhood discovery primitive**
 - Get set of direct neighbors
 - Query based primitive
 - Stronger guarantees
Model 2: Neighborhood Discovery

- **Primitive**
 - Query by robot R at time t
 - Return set $\text{Neighbors}(r,t)$

- **Query period**
 - From *query* to *return*
 - For each robot s'; during query period:
 - s' in range \Rightarrow s' in $\text{Neighbors}(r)$
 - s' not in range \Rightarrow s' not in $\text{Neighbors}(r)$
 - s' partially in range \Rightarrow undetermined.
Model 2: Restrictions

- **Restriction**
 - Reservations within $D/2$ (- errors)

- **Ensures**
 - Cannot conflict without being “introduced”
Model 2: Discussion

- **Advantage**
 - Dynamic groups
 - Locality-preserving
 - Scalable

- **Drawback**
 - No fault-tolerant protocol yet

- **Synchrony assumption**
 - Neighborhood discovery
 - FAIL => safety violation
Future Directions

- **Protocol extension**
 - pipelining / interleaving

- **Parameter dimensioning**
 - robots density
 - robot speed / acceleration / braking distance
 - communication range
 - communication delays
 - errors
Conclusion

- **Part I**
 - Study limits of coordination
 - Tolerate faulty compasses

- **Part II**
 - Use communication & location
 - Reservation system
 - Full connected: simple, FT
 - Ad hoc: scalable, flexible

- **Theory: still a long way to go...**
References

- **Models**

- **Gathering**
Unreliable compasses

Other formation problems

Collisions

Path reservation