
IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

An Architecture for Robust and
Fault Tolerant

Autonomous Robots
Raja Chatila, Sara Fleury, Matthieu Gallien, Matthieu Herrb,
Felix Ingrand, Benjamin Lussier, David Powell, Fréderic Py

LAAS - CNRS
Toulouse, France

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Autonomous Systems

Lama

Dala
2

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Autonomous Systems
Exploration Rovers

Drones

Satellites

Space Probes

Lama

Dala
2

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Autonomous Systems
Interacting with humans

3

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Autonomous Systems
Interacting with humans

Companion Robots

3

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Autonomous Systems
Interacting with humans

Service Robots

Companion Robots

3

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Autonomous Systems
Interacting with humans

Service Robots

Companion Robots Tour Robots

3

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

The problem
To improve the dependability of Autonomous robots
and systems
Large number of functional subsystems

Sensors/Effectors

Decisional capabilities
planning/scheduling, supervision and plan execution
control

Evolve in the real world...
4

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

Dependability

[ALR 04] A. Avizienis, J.C. Laprie & B. Randell, Dependability and its Threats : A Taxonomy.
 18th IFIP World Congress, 2004

5

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

Dependability

[ALR 04] A. Avizienis, J.C. Laprie & B. Randell, Dependability and its Threats : A Taxonomy.
 18th IFIP World Congress, 2004

continuity of correct service

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

absence of catastrophic consequences
on the user(s) and the environment

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

5

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

Dependability

[ALR 04] A. Avizienis, J.C. Laprie & B. Randell, Dependability and its Threats : A Taxonomy.
 18th IFIP World Congress, 2004

continuity of correct service

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

absence of catastrophic consequences
on the user(s) and the environment

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

means to avoid service failures in the
presence of faults

6 Jean-Claude Laprie, Algirdas !"#$!#%&#'()*+#,&)-,&.%//

The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity
Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal
Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),

5

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Objectives

To offer some guarantees on the dependability of

autonomous systems (reliability and safety)

Choice of architecture : Hierarchical Architecture

Mean : Online execution control (fault tolerance)

6

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Robots are complex systems
numerous sensors and effectors

Various type of processing
functional / decisional
real time / exponential complexity

Sharing information and codes
interoperability

Why an architecture?

7

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Programmability
multiple environments
or tasks,

different abstract
levels

Adaptability

Reactivity

Consistent behavior

Extensibility /
Reusability

Robustness /
Dependability

Properties

8

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Architectures
Remote

Agent

Composants fonctionnels

PS

Exec

MIR

Modèles

Modèles

Modèles

Remote Agent (Nasa)

[Bernard 00] D. Bernard et al., Remote Agent Experiment.
	 	 Rapport technique Nasa ARC & JPL, 2000

Remote

Agent

Composants fonctionnels

PS

Exec

MIR

Modèles

Modèles

Modèles

9

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

IDEA (Nasa)

A
g
e
n
ts

 ID
E

A

Niveau

But

Niveau

Tâche

Niveau

Commande

encapsulation

IDEA

Flight
Software

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

Timelines partagées

Architectures

A
g
e
n
ts

 ID
E

A

Niveau

But

Niveau

Tâche

Niveau

Commande

encapsulation

IDEA

Flight
Software

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

Timelines partagées

[Muscettola 02] N. Muscettola et al., IDEA : Planning at the Core of Autonomous Reactive Agents.
	 	 3rd Int. NASA Workshop on Planning & Scheduling for Space, 2002

Remote

Agent

Composants fonctionnels

PS

Exec

MIR

Modèles

Modèles

Modèles

9

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

CLARAty (Nasa)

...

...

...

...

...
...

...

...

...

...

...

MATERIEL

ENVIRONNEMENT

robot

motor sensor cameraswitch

A2D digital IO framegrabber

joint

locomotor

linkage stereo

arm mast
wheel

team

manip.

l

Figure 1.6: Proposed relationship of Functional and Decision Layers.

future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.

24

Buts

Accès au niveau fonctionnel
par appel de méthodes

d'interfaces
à fort niveau d'abstraction

Prédictions sur les ressources et
plans locaux durant la
planification.
Niveau réel des ressources et état
du système durant l'exécution.

Planification
dominante

Exécution
dominante

M
IS

S
IO

N

R
O

B
O

T

n
iv

ea
u
 d

'a
b
st

ra
ct

io
n

c
a

p
a

c
it

é
 d

é
c

is
io

n
e

ll
e

Architectures

A
g
e
n
ts

 ID
E

A

Niveau

But

Niveau

Tâche

Niveau

Commande

encapsulation

IDEA

Flight
Software

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

Timelines partagées

...

...

...

...

...
...

...

...

...

...

...

MATERIEL

ENVIRONNEMENT

robot

motor sensor cameraswitch

A2D digital IO framegrabber

joint

locomotor

linkage stereo

arm mast
wheel

team

manip.

l

Figure 1.6: Proposed relationship of Functional and Decision Layers.

future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.

24

Buts

Accès au niveau fonctionnel
par appel de méthodes

d'interfaces
à fort niveau d'abstraction

Prédictions sur les ressources et
plans locaux durant la
planification.
Niveau réel des ressources et état
du système durant l'exécution.

Planification
dominante

Exécution
dominante

M
IS

S
IO

N

R
O

B
O

T

n
iv

ea
u
 d

'a
b
st

ra
ct

io
n

c
a

p
a

c
it

é
 d

é
c

is
io

n
e

ll
e

[NWBSE 03] I.A. Nesnas et al., CLARAty and Challenges of Developing Interoperable Robotic Software.
	 	 IROS 2003

Remote

Agent

Composants fonctionnels

PS

Exec

MIR

Modèles

Modèles

Modèles

9

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Architectures

A
g
e
n
ts

 ID
E

A

Niveau

But

Niveau

Tâche

Niveau

Commande

encapsulation

IDEA

Flight
Software

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

LANE

lane_sv

CAMERA

camera_sv shot shotidle idle

SCORREL

scorrel_sv
scorrel scorrelidleidle

P3D

p3d_sv
trackidle

read fuseidle idle

idle

contained-bymeets

idle

read fuse

shot

scorrel

Science

science_sv monitor science

idle

track

RFLEX

speed_sv tsidle

idle idle

read

tstststststststststststststststststs

idle shot

picture monitor

tstststststs

Timelines partagées

...

...

...

...

...
...

...

...

...

...

...

MATERIEL

ENVIRONNEMENT

robot

motor sensor cameraswitch

A2D digital IO framegrabber

joint

locomotor

linkage stereo

arm mast
wheel

team

manip.

l

Figure 1.6: Proposed relationship of Functional and Decision Layers.

future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.

24

Buts

Accès au niveau fonctionnel
par appel de méthodes

d'interfaces
à fort niveau d'abstraction

Prédictions sur les ressources et
plans locaux durant la
planification.
Niveau réel des ressources et état
du système durant l'exécution.

Planification
dominante

Exécution
dominante

M
IS

S
IO

N

R
O

B
O

T

n
iv

ea
u
 d

'a
b
st

ra
ct

io
n

c
a

p
a

c
it

é
 d

é
c

is
io

n
e

ll
e

Contrôleur d'exécution

Exécutif Planificateur

Niveau fonctionnel

ENVIRONNEMENT

Niveau de contrôle d'exécution

Niveau Décisionnel

LAAS (LAAS)

Remote

Agent

Composants fonctionnels

PS

Exec

MIR

Modèles

Modèles

Modèles

9

The LAAS Architecture

The LAAS Architecture

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Functional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional LevelGenoM independant modules
corresponding to a group of
functionalities.

Each module provides a service

Real Time aspect

Algorithm are broken down in
pieces

Each task has its own priority/
frequency

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Decisional Level

Functional Level

Pos

Antenne

SpeedP3D

POM

PosVME
Science

Aspect Obs

Laser
RF

Scan

Im.

St.Scorrel

Camera Im.

NDD Speed

PosRFLEX Platine

Lane Env

Functional Level

12

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Decisional Level

Functional Level

Pos

Antenne

SpeedP3D

POM

PosVME
Science

Aspect Obs

Laser
RF

Scan

Im.

St.Scorrel

Camera Im.

NDD Speed

PosRFLEX Platine

Lane Env

GenoM

13

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

GenoMExecution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Decisional Level

Functional Level

Pos

Antenne

SpeedP3D

POM

PosVME
Science

Aspect Obs

Laser
RF

Scan

Im.

St.Scorrel

Camera Im.

NDD Speed

PosRFLEX Platine

Lane Env

13

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

GenoM

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Decisional Level

Functional Level

Pos

Antenne

SpeedP3D

POM

PosVME
Science

Aspect Obs

Laser
RF

Scan

Im.

St.Scorrel

Camera Im.

NDD Speed

PosRFLEX Platine

Lane Env

13

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

GenoM

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Decisional Level

Functional Level

Pos

Antenne

SpeedP3D

POM

PosVME
Science

Aspect Obs

Laser
RF

Scan

Im.

St.Scorrel

Camera Im.

NDD Speed

PosRFLEX Platine

Lane Env

13

Each module is an instance
of this one

control
poster

functional

poster

Control Task

Execution Tasks

activities

Functional
IDS

Control IDS

P
o
ste

rs in
te

rfa
c
e

Request

Report

Services Interface

Poster:
Images

Requests:
Take Image
Save Image to Disk

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

GenoM

ETHER

START

EXEC IDLEFAIL

END

INTER

request(arg)/_ _/started

abort/_

abort/_

abort/__/interrupted

_/OK(ret)

_/failed

events :

 input / output

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Decisional Level

Functional Level

Pos

Antenne

SpeedP3D

POM

PosVME
Science

Aspect Obs

Laser
RF

Scan

Im.

St.Scorrel

Camera Im.

NDD Speed

PosRFLEX Platine

Lane Env

13

Each module is an instance
of this one

Each activity runs an
automaton such as this one

control
poster

functional

poster

Control Task

Execution Tasks

activities

Functional
IDS

Control IDS

P
o
ste

rs in
te

rfa
c
e

Request

Report

Services Interface

Poster:
Images

Requests:
Take Image
Save Image to Disk

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

GenoM

Provides a “software engineering” framework

Many implementation aspects are relieved from the
programmer (communication, threading, etc)

Internal automaton for the internal activities

14

Decisional Level (Task Planning)

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

IxTeT

Action representation

Given a goal and a state
produce a plan to reach it
Repair and replan

Decisional Level (Task Planning)

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

IxTeT

Action representation

Given a goal and a state
produce a plan to reach it
Repair and replan

AVAILABLE(LH)

AT_ROBOT()
LOC2

AT_OBJECT(O1)

LOC1

ON(O1)

t_s
M9

AVAILABLE(RH) T

AT_OBJECT(O2)

ON(O2)

LOC4

LOC1

LH

T

LOC3
AT_OBJECT(O3)

ON(O3)
LOC3

t_s
C5

t_e
C5

t_e
M9

t_s
M7

t_s
T4

t_e
T4

t_s
C6

t_e
M7

t_i
C5

t_i
C6

t_e
C6

t_s
P3

t_s
P1

t_e
P3

t_e
P1

t_g
1

t_g
2

LOC1 LOC4LOC4

idle idle

t_s

idle

idle

LOC4

idle idle

LOC4RH
idle

LOC4

F

F

Decisional Level (Task Planning)

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

IxTeT

Action representation

Given a goal and a state
produce a plan to reach it
Repair and replan

Decisional Level (Procedural Executive)

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

OpenPRS
Refine high level “task”
Some local recoveries
Goal and Data driven procedures
Use procedural reasoning

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Decisional Level

Brings some operational “robustness”

Plan repair

Failure recovery from the Procedural Executive

17

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Dependability of Autonomous Systems

Functional level hard to validate :

we may validate 1 module (synchronous language, UPPAAL, Spin ...)

but hard to validate tens and their concurrent interactions...

Decisional based on AI concept (complex formalism, ...)

Environment can hardly be modeled (unforeseen
evolutions, ...)

18

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Dependability of Autonomous Systems

Functional level hard to validate :

we may validate 1 module (synchronous language, UPPAAL, Spin ...)

but hard to validate tens and their concurrent interactions...

Decisional based on AI concept (complex formalism, ...)

Environment can hardly be modeled (unforeseen
evolutions, ...)

Such a system offers little guarantee w.r.t
reliability and safety

18

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Proposed Solution
The component must have the following properties

Observable knowledge at all time of the events which
may change the state of the system.

Control ability to act upon these events to maintain
the system in a safe and consistent state.

Real Time decide and act in real-time.

Validation use formal method.

Simple ease of use to program the
constraints and the rules.

Integrated well integrated in the rest of the
architecture.

19

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

The Request and Report Checker

R²C

System State

Database

In
p

u
t

B
u

ff
e
r

O
u

tp
u

t
B

u
ff

e
r

State
Checker

update

writeread

requests

events
(reports,...)

reports

actions
(launch,
 kill, ...)

Functional Layer

Decisional Layer

20

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

The Request and Report Checker

Events Capture1

20

R²C

System State

Database

In
p

u
t

B
u

ff
e
r

O
u

tp
u

t
B

u
ff

e
r

State
Checker

update

writeread

requests

events
(reports,...)

reports

actions
(launch,
 kill, ...)

Functional Layer

Decisional Layer

In
p

u
t

B
u

ff
e
r

requests

events
(reports,...)

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

The Request and Report Checker

Events Capture1

State Update2

20

R²C

System State

Database

In
p

u
t

B
u

ff
e
r

O
u

tp
u

t
B

u
ff

e
r

State
Checker

update

writeread

requests

events
(reports,...)

reports

actions
(launch,
 kill, ...)

Functional Layer

Decisional Layer

In
p

u
t

B
u

ff
e
r

requests

events
(reports,...)

System State

Database

update

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

The Request and Report Checker

Events Capture1

State Update2

State Checker3

20

R²C

System State

Database

In
p

u
t

B
u

ff
e
r

O
u

tp
u

t
B

u
ff

e
r

State
Checker

update

writeread

requests

events
(reports,...)

reports

actions
(launch,
 kill, ...)

Functional Layer

Decisional Layer

In
p

u
t

B
u

ff
e
r

requests

events
(reports,...)

System State

Database

update

State

Checker

writeread

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

The Request and Report Checker

Events Capture1

State Update2

State Checker3

Actions Exec.4

20

R²C

System State

Database

In
p

u
t

B
u

ff
e
r

O
u

tp
u

t
B

u
ff

e
r

State
Checker

update

writeread

requests

events
(reports,...)

reports

actions
(launch,
 kill, ...)

Functional Layer

Decisional Layer

In
p

u
t

B
u

ff
e
r

requests

events
(reports,...)

System State

Database

update

State

Checker

writeread

O
u

tp
u

t
B

u
ff

e
r

reports

actions
(launch,
 kill, ...)

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

PDesired
properties

S

Reachable states

with system alone

Principle
Formal model of the system (automates, RdP, ...)
Desired properties

Invalid State

 Invalid Successor(s)

Valid State

21

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

PDesired
properties

S

Reachable states

with system alone

Principle

Model-checking :
	 - OK
	 - NO + counter example(s)

Formal model of the system (automates, RdP, ...)
Desired properties

Invalid State

 Invalid Successor(s)

Valid State

21

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Controller synthesis
- detect dangerous
transitions w.r.t P
- generate a component
which blocks them

PDesired
properties

S

Reachable states

with system alone

Principle

S
C

Reachable states
with controlled system

Formal model of the system (automates, RdP, ...)
Desired properties

Invalid State

 Invalid Successor(s)

Valid State

21

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

CTL : Computational Tree Logic
time is seen as the tree
of possible future

Operators :

X p (next p), G p (always p), F p (p will be true), p U q (p until q),
p W q (p weak until q)

with quantifiers A (all) or E (eventually)

Exemple : AG(➡ A(W))

Formalism well known and mastered by the model checking community

R R G

Expression of the properties : CTL

R

G

Y

R Y

G

Y G

R

G

Y G

R

G R

R

G

Y

22

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

CTL : Computational Tree Logic
time is seen as the tree
of possible future

Operators :

X p (next p), G p (always p), F p (p will be true), p U q (p until q),
p W q (p weak until q)

with quantifiers A (all) or E (eventually)

Exemple : AG(➡ A(W))

Formalism well known and mastered by the model checking community

R R G

Expression of the properties : CTL

R

G

Y

R Y

G

Y G

R

G

Y G

R

G R

R

G

Y

22

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

CTL : Computational Tree Logic
time is seen as the tree
of possible future

Operators :

X p (next p), G p (always p), F p (p will be true), p U q (p until q),
p W q (p weak until q)

with quantifiers A (all) or E (eventually)

Exemple : AG(➡ A(W))

Formalism well known and mastered by the model checking community

R R G

Expression of the properties : CTL

R

G

Y

R Y

G

Y G

R

G

Y G

R

G R

R

G

Y

22

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

CTL : Computational Tree Logic
time is seen as the tree
of possible future

Operators :

X p (next p), G p (always p), F p (p will be true), p U q (p until q),
p W q (p weak until q)

with quantifiers A (all) or E (eventually)

Exemple : AG(➡ A(W))

Formalism well known and mastered by the model checking community

R R G

Expression of the properties : CTL

R

G

Y

R Y

G

Y G

R

G

Y G

R

G R

R

G

Y

If the light is red
it will remain red or go green

22

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

OBDD : Ordered Binary Decision Diagram
Binary graph where nodes correspond to a
binary test
Canonical and compact form
Drawbacks :

sensitive to variables order
only symbolic variables

OBDDs

(a=b)⋀(b⋁(c⇒d))

[Bryant 86] R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation. Transactions on Computers, 1986.
[Burch 92] J.R. Burch et al., Symbolic Model Checking : 1020 States and Beyond. Information & Computing, 1992.

A

D

C

B B

FT

23

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

OBDD : Ordered Binary Decision Diagram
Binary graph where nodes correspond to a
binary test
Canonical and compact form
Drawbacks :

sensitive to variables order
only symbolic variables

OBDDs

(a=b)⋀(b⋁(c⇒d))

[Bryant 86] R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation. Transactions on Computers, 1986.
[Burch 92] J.R. Burch et al., Symbolic Model Checking : 1020 States and Beyond. Information & Computing, 1992.

D

A

B

C

A

BB

F T

23

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Similar to OBDDs
variables have a fixed constraint associated :
e.g. y in [0.0, +∞[
for each variable we create a partition w.r.t. the
constraints
result is equivalent to an OBDD

x=OK

y in { [0,1[,]1, +inf] }

y=1 y=1

z>10 z>10

T

T

24

OCRDs

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Similar to OBDDs
variables have a fixed constraint associated :
e.g. y in [0.0, +∞[
for each variable we create a partition w.r.t. the
constraints
result is equivalent to an OBDD

x=OK

y in { [0,1[,]1, +inf] }

y=1 y=1

z>10 z>10

T

T

We can express fixed
constraints on request

arguments and report values.
24

OCRDs

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Example
check {
never: running(camera.takeshot()) && !last(camera.init(?mode));
always: last(camera.init(?mode) with ?mode!=LOW)
 => !(running(platine.move(?pos))
 && running(camera.takeshot()));
}

camera

platine

25

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Example

past(camera.init with
 arg.status in {HIGH, MIDDLE})

past(camera.init with arg.status==LOW)

running(platine.move)

running(camera.takeshot)

T
F

past(camera.init with
 arg.status in {HIGH, MIDDLE})

check {
never: running(camera.takeshot()) && !last(camera.init(?mode));
always: last(camera.init(?mode) with ?mode!=LOW)
 => !(running(platine.move(?pos))
 && running(camera.takeshot()));
}

camera

platine

25

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Controllable

Example

past(camera.init with
 arg.status in {HIGH, MIDDLE})

past(camera.init with arg.status==LOW)

running(platine.move)

running(camera.takeshot)

T
F

past(camera.init with
 arg.status in {HIGH, MIDDLE})

check {
never: running(camera.takeshot()) && !last(camera.init(?mode));
always: last(camera.init(?mode) with ?mode!=LOW)
 => !(running(platine.move(?pos))
 && running(camera.takeshot()));
}

camera

platine

25

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

State Checker

past(camera.init with arg.status==LOW)

past(camera.init with
 arg.status in {HIGH, MIDDLE})

past(camera.init with
 arg.status in {HIGH, MIDDLE})

running(platine.move)

running(camera.takeshot)

T
F

T

F

T

T

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

State Checker

1- We set the non controllable predicates

past(camera.init with
 arg.status in {HIGH, MIDDLE})

past(camera.init with
 arg.status in {HIGH, MIDDLE})

running(platine.move)

running(camera.takeshot)

T
F

T

F

T

T

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

State Checker

1- We set the non controllable predicates

running(platine.move)

running(camera.takeshot)

T
F

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

State Checker

2- We evaluate the cost of various solution

running(platine.move)

running(camera.takeshot)

T
F

0

p2

p1

∞

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

State Checker

2- We evaluate the cost of various solution

running(platine.move)

running(camera.takeshot)

T
F

p2

p1

∞

0+min(p2, ∞) = p2

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

State Checker

3- We choose the less expensive solution (p1<p2)

running(platine.move)

running(camera.takeshot)

T
F

p2

p1

∞

0+min(p2, ∞) = p2

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Test With An Autonomous Robot

Plan (IxTeT-Exec) :
Objective : take science
pictures in a time frame
Repair or replan when
problems occur
Adding goal during
communication window

com.com.

t0 tmax

27

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Constraints on Dala
#define refME "rflex"

check {
 always: (running(pom.addME) || running(pom.addSE)) => last(pom.SetModel);
 never: running(pom.SetRefME with arg.name!=refME);
 always: running(pom.setRefME) => last(pom.addME with arg.name==refME);
 always: running(pom.Run) => last(pom.setRefME);
 always: running(ndd.GoTo) => last(pom.Run);
 always: running(ndd.GoTo) => (last(ndd.SetParams) && last(ndd.SetSpeed with arg.linear<1.0));
 always: running(ndd.GoTo) => running(aspect.AspectFromPosterConfig);
 always: running(aspect.AspectFromPosterConfig) => last(aspect.SetViewParameters);
 always: running(aspect.AspectFromPosterConfig with
 arg.posPosterName.name.name=="pomSickFramePos") => last(sick.SetPomTagging with arg==SICK_TRUE);
always: running(aspect.AspectFromPosterConfig with
 arg.posPosterName.name.name=="pomSickFramePos") => last(sick.ContinuousShot);
 never: running(antenna.Comunicate) && running(rflex.TrackSpeedStart);
 never: running(rflex.TrackSpeedStart) && (running(platine.CmdPosCoord) || running(platine.CmdPosPan)
 || running(platine.CmdPosTilt) || running(platine.TrackPos));
 never: running(rflex.TrackSpeedStart with arg.name.value.v>0.9);
 always: running(antenna.Comunicate) => last(antenna.AddWindow);
 always: running(antenna.AddWindow) => last(antenna.Init);
 always: running(camera.OneShot) => last(camera.Initialize);
 never: running(camera.OneShot) &&(running(platine.CmdPosCoord) || running(platine.CmdPosPan)
 || running(platine.CmdPosTilt)|| running(platine.TrackPos));
}

28

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Constraints on Dala
#define refME "rflex"

check {
 always: (running(pom.addME) || running(pom.addSE)) => last(pom.SetModel);
 never: running(pom.SetRefME with arg.name!=refME);
 always: running(pom.setRefME) => last(pom.addME with arg.name==refME);
 always: running(pom.Run) => last(pom.setRefME);
 always: running(ndd.GoTo) => last(pom.Run);
 always: running(ndd.GoTo) => (last(ndd.SetParams) && last(ndd.SetSpeed with arg.linear<1.0));
 always: running(ndd.GoTo) => running(aspect.AspectFromPosterConfig);
 always: running(aspect.AspectFromPosterConfig) => last(aspect.SetViewParameters);
 always: running(aspect.AspectFromPosterConfig with
 arg.posPosterName.name.name=="pomSickFramePos") => last(sick.SetPomTagging with arg==SICK_TRUE);
always: running(aspect.AspectFromPosterConfig with
 arg.posPosterName.name.name=="pomSickFramePos") => last(sick.ContinuousShot);
 never: running(antenna.Comunicate) && running(rflex.TrackSpeedStart);
 never: running(rflex.TrackSpeedStart) && (running(platine.CmdPosCoord) || running(platine.CmdPosPan)
 || running(platine.CmdPosTilt) || running(platine.TrackPos));
 never: running(rflex.TrackSpeedStart with arg.name.value.v>0.9);
 always: running(antenna.Comunicate) => last(antenna.AddWindow);
 always: running(antenna.AddWindow) => last(antenna.Init);
 always: running(camera.OneShot) => last(camera.Initialize);
 never: running(camera.OneShot) &&(running(platine.CmdPosCoord) || running(platine.CmdPosPan)
 || running(platine.CmdPosTilt)|| running(platine.TrackPos));
}

17 rules
1 to 5 predicates per rules

28

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Resulting OCRD for Dala past(antenna_Init)

running(antenna_AddWindow)

past(antenna_AddWindow)

running(antenna_Comunicate) running(antenna_Comunicate)

running(platine_CmdPosTilt)

running(platine_CmdPosPan)

running(platine_CmdPosCoord)

running(platine_CmdPosTilt)

running(platine_CmdPosPan)

running(platine_CmdPosCoord)

running(rflex_TrackSpeedStart).arg.name.value.v<=0.9

past(camera_Initialize)

running(rflex_TrackSpeedStart).arg.name.value.v<=0.9

running(camera_OneShot)

past(aspect_SetViewParameters)

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name=="pomSickFramePos"

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name!="pomSickFramePos"

past(sick_SetPomTagging).arg==SICK_TRUE

past(sick_ContinuousShot)

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name=="pomSickFramePos"running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name=="pomSickFramePos"

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name!="pomSickFramePos"

past(ndd_SetSpeed).arg.linear<1

past(ndd_SetParams)

past(pom_setRefME)

running(ndd_GoTo)

past(pom_addME)

running(pom_setRefME)

past(pom_SetModel)

running(pom_addSE)

running(pom_addME)

running(rflex_TrackSpeedStart).arg.name.value.v>0.9

T

Depth : 28
of nodes : 33
Processing time of the R2C < 0.4ms

29

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Demonstration ...

30

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Demonstration ...

reject(platine.move)

reject(antena.communicate)

kill(rflex.trackSpeed)
30

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

R2C on Dala: Usage Analysis

Detected “real” problems in the Procedural Executive

procedures

Online control => enforces some dependability at all time

No noticeable effect on the performance of the system

31

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Conclusion

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

32

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Conclusion
Functional

semi formal framework
reusability
ease of integration
Tool: GenoM

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

32

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Conclusion
Functional

semi formal framework
reusability
ease of integration
Tool: GenoM

Execution Control
Fault tolerance (safety bag)
Tools: R2C

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

32

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Conclusion
Functional

semi formal framework
reusability
ease of integration
Tool: GenoM

Execution Control
Fault tolerance (safety bag)
Tools: R2C

Decisional
bring the autonomy
procedural executive
planning possible...
... plan execution
control is then desirable
Tools: OpenPRS, IxTeT

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

32

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Conclusion
Functional

semi formal framework
reusability
ease of integration
Tool: GenoM

http://softs.laas.fr/

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Control
Fault tolerance (safety bag)
Tools: R2C

Decisional
bring the autonomy
procedural executive
planning possible...
... plan execution
control is then desirable
Tools: OpenPRS, IxTeT

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

32

http://softs.laas.fr
http://softs.laas.fr
http://softs.laas.fr

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Related Ongoing Works (LAAS)
SAC (Critical Autonomous System) project (presented by David
Powell)

Safety Bag “rules” specifications (PhD LAAS)

AMAES (Advanced Methods for Autonomous Embedded Systems,
LAAS, Verimag), timed automata (functional and decisional
level)

AGATA (architecture for autonomous satellite)

COGNIRON (Cognitive Robot EEC FP6 Project)
33

IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

Thanks

34

