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The problem
To improve the dependability of Autonomous robots 
and systems
Large number of functional subsystems

Sensors/Effectors

Decisional capabilities
planning/scheduling, supervision and plan execution 
control

Evolve in the real world...
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The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.
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3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),
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Objectives

To offer some guarantees on the dependability of 

autonomous systems (reliability and safety)

Choice of architecture : Hierarchical Architecture

Mean : Online execution control (fault tolerance)
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Robots are complex systems
numerous sensors and effectors

Various type of processing
functional / decisional
real time / exponential complexity

Sharing information and codes
interoperability

Why an architecture?
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Programmability
multiple environments 
or tasks, 

different abstract 
levels

Adaptability 

Reactivity

Consistent behavior

Extensibility / 
Reusability

Robustness / 
Dependability

Properties
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[Bernard 00] D. Bernard et al., Remote Agent Experiment.
	 	      Rapport technique Nasa ARC & JPL, 2000 
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Figure 1.6: Proposed relationship of Functional and Decision Layers.

future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.
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Figure 1.6: Proposed relationship of Functional and Decision Layers.

future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.
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future projections of resource availability on the time-line which forces replanning to occur. This cycle is

indicated by the large arrows in Figure 1.7.

The process described is typical of systems where the procedural components of the executive are sep-

arated from the declarative components of planning and scheduling. As will be shown later in Chapter 6,

it is not necessary that the boundary between planning and execution exist at a specific point in time —

planning and scheduling can occur very near to the present, while executive-style procedural decomposition

may be incorporated into distant planning. Therefore, the plan freeze boundary in Figure 1.7 is not required

for CLARAty, and the potential cross-coupling of Planner and Executive is one of the primary reasons for

merging both into a single Decision Layer. As discussed later, the format of these merged activities, and the

interface between them, is currently under development.

Finally, it is important to note that there is also a migration of some executive-style procedural expansion

into the Functional Layer as well. Each object has built in functionality which will have a procedural

decomposition of its actions, and may have it own mini-executive, or even planner. CLARAty does not

preclude this, and allows for this functionality to be leveraged or bypassed, depending on the desire of

system designers, and the capabilities of the Decision Layer.

1.4 Implementation

While the prototyping and implementation of the CLARAty architecture is still in its early stages, some

specifications and results are important to mention, illustrating the direction of this work. Below are de-

scribed some of the tool and standard choices, heritage software that will be included into the framework,

and prototyping status at this time.
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GenoM

Provides a “software engineering” framework

Many implementation aspects are relieved from the 
programmer (communication, threading, etc)

Internal automaton for the internal activities
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Decisional Level

Brings some operational “robustness”

Plan repair

Failure recovery from the Procedural Executive
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Dependability of Autonomous Systems

Functional level hard to validate :

we may validate 1 module (synchronous language, UPPAAL, Spin ...)

but hard to validate tens and their concurrent interactions...

Decisional based on AI concept (complex formalism, ...)

Environment can hardly be modeled (unforeseen 
evolutions, ...)
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Dependability of Autonomous Systems

Functional level hard to validate :

we may validate 1 module (synchronous language, UPPAAL, Spin ...)

but hard to validate tens and their concurrent interactions...

Decisional based on AI concept (complex formalism, ...)

Environment can hardly be modeled (unforeseen 
evolutions, ...)

Such a system offers little guarantee w.r.t 
reliability and safety
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Proposed Solution
The component must have the following properties

Observable knowledge at all time of the events which 
may change the state of the system.

Control ability to act upon these events to maintain 
the system in a safe and consistent state.

Real Time decide and act in real-time.

Validation use formal method.

Simple ease of use to program the 
constraints and the rules.

Integrated well integrated in the rest of the 
architecture.
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The Request and Report Checker
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Controller synthesis
- detect dangerous 
transitions w.r.t P
- generate a component 
which blocks them 
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CTL : Computational Tree Logic 
time is seen as the tree
of possible future

Operators :

X p (next p), G p (always p), F p (p will be true), p U q (p until q), 
p W q (p weak until q)

with quantifiers A (all) or E (eventually) 

Exemple : AG(        ➡ A(      W      )) 

Formalism well known and mastered by the model checking community

R R G

Expression of the properties : CTL
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OBDD : Ordered Binary Decision Diagram
Binary graph where nodes correspond to a 
binary test
Canonical  and compact form
Drawbacks :

sensitive to variables order
only symbolic variables

OBDDs

(a=b)⋀(b⋁(c⇒d))

[Bryant 86] R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation. Transactions on Computers, 1986.
[Burch 92]   J.R. Burch et al., Symbolic Model Checking : 1020 States and Beyond. Information & Computing, 1992.

A

D

C

B B

FT

23



IFIP Working Group 10.4, Winter meeting, Tucson, AZ, February 16-17, 2006

OBDD : Ordered Binary Decision Diagram
Binary graph where nodes correspond to a 
binary test
Canonical  and compact form
Drawbacks :

sensitive to variables order
only symbolic variables

OBDDs
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[Bryant 86] R.E. Bryant, Graph-Based Algorithms for Boolean Function Manipulation. Transactions on Computers, 1986.
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Similar to OBDDs 
variables have a fixed constraint associated : 
e.g. y in [0.0, +∞[
for each variable  we create a partition w.r.t. the 
constraints
result is equivalent to an OBDD

x=OK

y in { [0,1[, ]1, +inf] }

y=1 y=1

z>10 z>10

T

T

24
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Similar to OBDDs 
variables have a fixed constraint associated : 
e.g. y in [0.0, +∞[
for each variable  we create a partition w.r.t. the 
constraints
result is equivalent to an OBDD

x=OK

y in { [0,1[, ]1, +inf] }

y=1 y=1

z>10 z>10

T

T

We can express fixed 
constraints on request 

arguments and report values.
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Example
check { 
never: running(camera.takeshot()) && !last(camera.init(?mode)); 
always: last(camera.init(?mode) with ?mode!=LOW) 
             => !( running(platine.move(?pos)) 
                     && running(camera.takeshot()) ); 
}

camera

platine

25
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Example

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

past(camera.init with arg.status==LOW)

running(platine.move)

running(camera.takeshot)

T
F

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

check { 
never: running(camera.takeshot()) && !last(camera.init(?mode)); 
always: last(camera.init(?mode) with ?mode!=LOW) 
             => !( running(platine.move(?pos)) 
                     && running(camera.takeshot()) ); 
}

camera

platine
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Controllable

Example

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

past(camera.init with arg.status==LOW)

running(platine.move)

running(camera.takeshot)

T
F

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

check { 
never: running(camera.takeshot()) && !last(camera.init(?mode)); 
always: last(camera.init(?mode) with ?mode!=LOW) 
             => !( running(platine.move(?pos)) 
                     && running(camera.takeshot()) ); 
}

camera

platine
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State Checker

past(camera.init with arg.status==LOW)

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

running(platine.move)

running(camera.takeshot)

T
F

T

F

T

T
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State Checker

1- We set the non controllable predicates

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

past(camera.init with 
           arg.status in {HIGH, MIDDLE} )

running(platine.move)

running(camera.takeshot)

T
F

T

F

T

T
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State Checker

1- We set the non controllable predicates

running(platine.move)

running(camera.takeshot)

T
F
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State Checker

2- We evaluate the cost of various solution

running(platine.move)

running(camera.takeshot)

T
F

0

p2

p1

∞
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State Checker

2- We evaluate the cost of various solution

running(platine.move)

running(camera.takeshot)

T
F

p2

p1

∞

0+min(p2, ∞) = p2
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State Checker

3- We choose the less expensive solution (p1<p2)

running(platine.move)

running(camera.takeshot)

T
F

p2

p1

∞

0+min(p2, ∞) = p2
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Test With An Autonomous Robot

Plan (IxTeT-Exec) :
Objective : take science 
pictures in a time frame
Repair or replan when 
problems occur
Adding goal during 
communication window

com.com.

t0 tmax

27
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Constraints on Dala
#define refME "rflex"

check {
 always: ( running(pom.addME) || running(pom.addSE) )  => last(pom.SetModel);
 never: running(pom.SetRefME with arg.name!=refME);
 always: running(pom.setRefME) => last(pom.addME with arg.name==refME);
 always: running(pom.Run) => last(pom.setRefME);
 always: running(ndd.GoTo) => last(pom.Run);
 always: running(ndd.GoTo) => ( last(ndd.SetParams) && last(ndd.SetSpeed with arg.linear<1.0 ) );
 always: running(ndd.GoTo) => running(aspect.AspectFromPosterConfig);
 always: running(aspect.AspectFromPosterConfig) => last(aspect.SetViewParameters);
 always: running(aspect.AspectFromPosterConfig with 
                              arg.posPosterName.name.name=="pomSickFramePos") => last(sick.SetPomTagging with arg==SICK_TRUE);
always: running(aspect.AspectFromPosterConfig with
                               arg.posPosterName.name.name=="pomSickFramePos") => last(sick.ContinuousShot);
 never: running(antenna.Comunicate) && running(rflex.TrackSpeedStart);
 never: running(rflex.TrackSpeedStart) && ( running(platine.CmdPosCoord) || running(platine.CmdPosPan)
                                                                   || running(platine.CmdPosTilt) || running(platine.TrackPos) );
 never: running(rflex.TrackSpeedStart with arg.name.value.v>0.9);
 always: running(antenna.Comunicate) => last(antenna.AddWindow);
 always: running(antenna.AddWindow) => last(antenna.Init);
 always: running(camera.OneShot) => last(camera.Initialize);
 never: running(camera.OneShot) &&( running(platine.CmdPosCoord) || running(platine.CmdPosPan)
                                                          || running(platine.CmdPosTilt)|| running(platine.TrackPos) );
}

28
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Constraints on Dala
#define refME "rflex"

check {
 always: ( running(pom.addME) || running(pom.addSE) )  => last(pom.SetModel);
 never: running(pom.SetRefME with arg.name!=refME);
 always: running(pom.setRefME) => last(pom.addME with arg.name==refME);
 always: running(pom.Run) => last(pom.setRefME);
 always: running(ndd.GoTo) => last(pom.Run);
 always: running(ndd.GoTo) => ( last(ndd.SetParams) && last(ndd.SetSpeed with arg.linear<1.0 ) );
 always: running(ndd.GoTo) => running(aspect.AspectFromPosterConfig);
 always: running(aspect.AspectFromPosterConfig) => last(aspect.SetViewParameters);
 always: running(aspect.AspectFromPosterConfig with 
                              arg.posPosterName.name.name=="pomSickFramePos") => last(sick.SetPomTagging with arg==SICK_TRUE);
always: running(aspect.AspectFromPosterConfig with
                               arg.posPosterName.name.name=="pomSickFramePos") => last(sick.ContinuousShot);
 never: running(antenna.Comunicate) && running(rflex.TrackSpeedStart);
 never: running(rflex.TrackSpeedStart) && ( running(platine.CmdPosCoord) || running(platine.CmdPosPan)
                                                                   || running(platine.CmdPosTilt) || running(platine.TrackPos) );
 never: running(rflex.TrackSpeedStart with arg.name.value.v>0.9);
 always: running(antenna.Comunicate) => last(antenna.AddWindow);
 always: running(antenna.AddWindow) => last(antenna.Init);
 always: running(camera.OneShot) => last(camera.Initialize);
 never: running(camera.OneShot) &&( running(platine.CmdPosCoord) || running(platine.CmdPosPan)
                                                          || running(platine.CmdPosTilt)|| running(platine.TrackPos) );
}

17 rules
1 to 5 predicates per rules
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Resulting OCRD for Dala past(antenna_Init)

running(antenna_AddWindow)

past(antenna_AddWindow)

running(antenna_Comunicate) running(antenna_Comunicate)

running(platine_CmdPosTilt)

running(platine_CmdPosPan)

running(platine_CmdPosCoord) 

running(platine_CmdPosTilt) 

running(platine_CmdPosPan)

running(platine_CmdPosCoord)

running(rflex_TrackSpeedStart).arg.name.value.v<=0.9 

past(camera_Initialize) 

running(rflex_TrackSpeedStart).arg.name.value.v<=0.9

running(camera_OneShot)

past(aspect_SetViewParameters)

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name=="pomSickFramePos"

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name!="pomSickFramePos"

past(sick_SetPomTagging).arg==SICK_TRUE

past(sick_ContinuousShot)

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name=="pomSickFramePos"running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name=="pomSickFramePos"

running(aspect_AspectFromPosterConfig).arg.posPosterName.name.name!="pomSickFramePos" 

past(ndd_SetSpeed).arg.linear<1

past(ndd_SetParams) 

past(pom_setRefME) 

running(ndd_GoTo)

past(pom_addME)

running(pom_setRefME) 

past(pom_SetModel)

running(pom_addSE)

running(pom_addME)

running(rflex_TrackSpeedStart).arg.name.value.v>0.9

T

Depth : 28
# of nodes : 33
Processing time of the R2C < 0.4ms

29
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Demonstration ...

30
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Demonstration ...

reject(platine.move)

reject(antena.communicate)

kill(rflex.trackSpeed)
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R2C on Dala: Usage Analysis

Detected “real” problems in the Procedural Executive 

procedures

Online control => enforces some dependability at all time

No noticeable effect on the performance of the system
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Conclusion

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level
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Conclusion
Functional

semi formal framework
reusability 
ease of integration
Tool: GenoM

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level
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Conclusion
Functional

semi formal framework
reusability 
ease of integration
Tool: GenoM

Execution Control
Fault tolerance (safety bag)
Tools: R2C

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level
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Conclusion
Functional

semi formal framework
reusability 
ease of integration
Tool: GenoM

Execution Control
Fault tolerance (safety bag)
Tools: R2C

Decisional
bring the autonomy
procedural executive
planning possible...
... plan execution 
control is then desirable 
Tools: OpenPRS, IxTeT

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level
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Conclusion
Functional

semi formal framework
reusability 
ease of integration
Tool: GenoM

http://softs.laas.fr/

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level

Execution Control
Fault tolerance (safety bag)
Tools: R2C

Decisional
bring the autonomy
procedural executive
planning possible...
... plan execution 
control is then desirable 
Tools: OpenPRS, IxTeT

Execution Controller

Procedural
Executive

(open-PRS)

Planner
(IxTeT-eXeC)

Execution Control Level

Functional Level

ENVIRONMENT

Decisional Level
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Related Ongoing Works (LAAS)
SAC (Critical Autonomous System) project (presented by David 
Powell)

Safety Bag “rules” specifications (PhD LAAS)

AMAES (Advanced Methods for Autonomous Embedded Systems, 
LAAS, Verimag), timed automata (functional and decisional 
level)

AGATA (architecture for autonomous satellite)

COGNIRON (Cognitive Robot EEC FP6 Project)
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Thanks
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