# Certifiable Wireless Data Buses Autonomous Navigation

Vic Thomas February 2006

#### **Certifiable Wireless Data Buses**

Honeywell

#### Objective: Replace wired avionics data buses with wireless data buses

- Can we replace a wired bus such as ARINC 629 with a wireless equivalent?

#### • Rationale:

- Reduced weight
  - Translates to lower fuel costs
- Ease of re-configurability of aircraft
- Lower installation and maintenance costs

Honeywell

#### • Wireless data buses are being used for

#### - Cabin entertainment systems

 Reduces cost associated with changing seat pitch, seasonal changes in configuration (number of 1<sup>st</sup> class seats)

#### - Lavatory smoke detectors

- Today airplanes have superfluous wiring to accommodate different configurations used by different airlines
- Cargo hold smoke detectors
- Emergency lighting system

## All wireless data buses used today are for non-critical applications

#### Wireless Data Buses for Critical Applications

- The wireless data bus must be:
  - Reliable
  - Available
  - Protects data integrity
  - Deterministic
    - Bounded delivery times, low jitter
  - Secure
    - Low susceptibility to denial-of-service attacks (jamming)
    - Authenticated messages
    - Encryption?
  - Non-interference
    - Must not interfere with existing radios and avionics
  - Certifiable
    - If a data bus does not have the above properties it will be extremely difficult to certify any application that uses it

#### Challenges

- Certification is the biggest challenge
- Requirements are not well understood
  - E.g.: "How much" jamming resilience is required?
    - How is this specified?
    - How "jamming resistant" are today's avionics when personal radios are not allowed on board
- Lack of a good understanding of the faults suffered by wireless networks
- Current certification processes are inadequate
  - Limited to understanding the effects of on-board wireless systems on existing radios and avionics
- Where in the RF spectrum should these networks operate?
  - The only globally available frequency band is the 2.4 GHz ISM band
- Requires a change in the mind-set of the certification authorities
  - Knee-jerk reaction is to reject anything wireless as being inherently un-certifiable

#### **Designing a Wireless Data Bus**

- Given any dependability and security requirements it is possible to design a wireless data bus that meets those requirements
- Will such a bus deliver adequate bandwidth?
  - Techniques used to improve dependability and security typically result in reduced bandwidth

#### Commonly Used Techniques for Dependability and Security Honeywell

- A combination of techniques will be needed to meet dependability, determinism and security requirements
- Different techniques provide tolerance for different kinds of faults and are implemented at different layers of the protocol stack

#### **Techniques for Jamming Resistance**

- Spread spectrum techniques
  - Spread energy over larger part of the spectrum
  - Frequency hopping and Direct Sequence Pseudo Noise are commonly used
    - Time Hop and Transform Domain spread spectrum techniques less common
- Typically use combination of techniques
  - Frequency hopping + direct sequence
    - Permits use of wide-spaced bands (hop among bands and spread energy within band)
- For additional protection, send same bit(s) over multiple frequency hops
  - Keeps a narrow-band jammer from taking out a part of the communication
- For Frequency Hopping, hopping sequence must not be guessable
  - Cryptographic techniques
    - Can't guess seed of random number generator by observing generated numbers
  - Re-seed all random number generators during scheduled maintenance

Techniques for Reliability, Determinism and Security

- Physical/Link layer
  - Bits transmitted over multiple frequency hops
  - Determinism
- Network layer: At least N independent pre-computed routes between any two nodes
  - Tolerates failures on nodes
- Application layer: Control applications that can tolerate delayed or lost messages
- Security
  - Needed for authentication and possibly encryption
  - Aircraft wide-key, changed during scheduled maintenance

- A consortium of aerospace companies including Honeywell is working with the FAA on certification issues
- The RTCA SC-202 committee is studying the effects of on-board radios on avionics an other air to ground radio systems
  - Radios at different frequencies and radios that turn on and off
- NASA and the European Space Agency have been characterizing the RF environment on-board aircraft
- Research on control over unreliable communication links

## *It's only a matter of time before we see wireless network based critical systems.*

## **Autonomous Navigation**



#### **Autonomous Navigation**

- Honeywell, as a leader in navigation technologies is pursuing business in the area of autonomous navigation
- Potential markets include
  - Military
  - Mining
  - Mowing
  - ...
- We are currently working with a major manufacturer of mowers and a university to develop an autonomous mower
  - Golf courses: fairway mowing

IFIP-WG10.4

### **Autonomous Mowing of Fairways**

- Less challenging than many of the autonomous systems we heard about this week
  - Relatively benign terrain
  - Well known terrain
    - Good topological maps
  - Possible to install navigation infrastructure
    - GPS/RTK
  - Possible to install communication infrastructure
    - Mower to operator station



#### IFIP-WG10.4

Honeywell

#### Challenges

- Safety!
  - Golfers, fauna
- Precision Navigation
  - Parallel cuts, signature cuts
  - Claim: 5cm position accuracy
- Sensing
  - Obstacles
    - Small objects, uncontrolled lighting
  - Fairway edges
- Poor mower dynamics
  - Stopping distance ~5m at 2-3 m/s
- Reliable communications with a mobile base station
- User interfaces
  - Barely literate groundskeepers
  - Supervisor in maintenance building is typically computer literate
- Marketability
  - Cost: one time and recurring
  - US export controls prevent use of certain inertial navigation technologies

