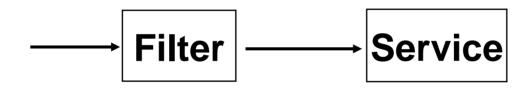
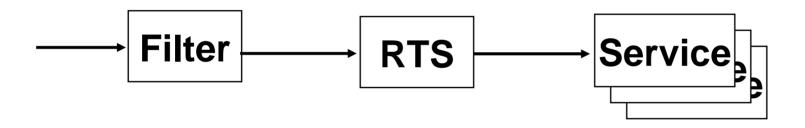
Cortex A Reconfigurable and Survivable Service Environment

Christopher Geib, Vu Ha, Karen Haigh, Walt Heimerdinger, David Musliner, Jon Schewe, Ryan VanRiper

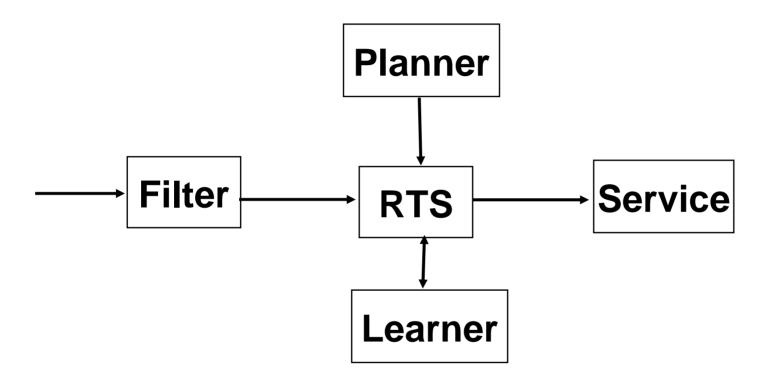
February 19, 2006



- Systems must be designed that are capable of response and regeneration after deliberate attack and catastrophic failures.
- However, response and regeneration must be sensitive to...
 - the mission that is being executed,
 - What tools and services are critical for the current mission goals?
 - What tools and services are not critical for the current mission goals?
 - and the lessons learned from the previous failure.
 - What features of the protocol were exploited in the attack?
 - Have features of the domain changed?
 - Are there new kinds of connections that should be blocked?
 - Are some kinds of attacks more common than we thought?


Cortex Objectives

- Prove the viability of automatically synthesizing a meta-level controller for model-based, system response and regeneration.
- Such regeneration control systems must have two critical capabilities:
 - planning that is sensitive to the system mission,
 - How much of the systems resources should be committed or held in reserve?
 - Planning conditional responses to known threats.
 - Trading off commitments for mission critical objectives.
 - and learning to prevent similar failures in the future.
 - Patch the services that were exploited
 - Modify the mission model to capture changes to the world.


Basic Service Environment

Environment with Replicated Servers

Environment with Replication and Learning

Existing Practice

- Automated system rebooting will bring elements of the system back on line after an attack, but these are limited:
 - Simple scripts that are not sensitive to the mission model.
 - Can't make trade offs between competing needs.
 - Single system reboot.
- Learning of exploits and diagnosing root causes of the failure is handled offline by system experts.
 - Conclusions are not captured at the mission model level.
 - Often performed somewhere else.
 - Slow and requires significant expertise.

Mission Model Motivation

Critical Problem Features

- Real world applicability and importance.
- Military relevance clear.
- Challenging complexity exceeds simple solutions.
- Multiple mission phases with differing objectives requiring differing responses to attack.
- Easy to find cyber attack methods within the literature.

Daily mission planning cycle

- Based on DARPA Cyber Panel Grand Challenge Problem
- Defense of an operations critical MySQL database for mission planning.

Cortex Role

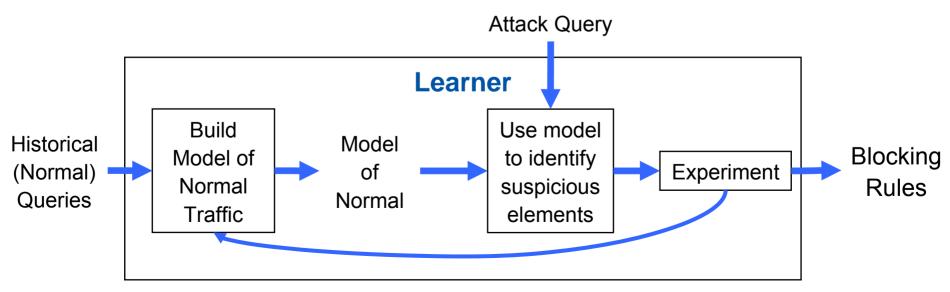
Protect the MySQL database:

- Guarantee availability
- Guarantee data integrity
- Making use of:
 - Redundant "taste tester" architecture
 - CIRCA planning for response and resource use
 - Learning based on active experimentation

Cortex control capabilities:

- Control query replication.
- Manage tasters (which is lead-taster, building new ones)
- Control access to DB (block known exploits)
- Invoke learning module

Goals


- Prove the viability of automatically synthesizing a meta-level controller for model-based system response and regeneration.
 - Limited impact on current users
 - Over all improved system throughput from increased system mission sensitive availability.
 - Demonstrate system scalability in two mission phases
- Demonstrate system planning for at least two different mission phases with significantly different requirements and responses.
- Demonstrate the viability of learning zero-day exploits within well understood protocols for at least two different protocols.

CIRCA Planning: Generalized Semi-Markov Decision Processes Honeywell

- Most existing decision-theoretic planning systems are based on the Markov Decision Processes and have difficulty handling multiple, asynchronous events.
- GSMDP provides the most natural framework for this purpose.
- CIRCA (Cooperative Intelligent Real-Time Control Architecture) is the first GSMDP planner.
 - Uses the decision-theoretic principle of maximizing expected utility (e.g. to trade off performance against safety).
 - Uses rich stochastic models of world, transitions, actions, and time to construct best defense plans.
 - Does not hand-build, but automatically synthesizes plans and can thus adapt to defend against combinations/mutations of existing exploits based on the mission model.

Active Learning Approach

- We know an attack succeeded, but we don't know why.
 - Need an educated guess as to culprits, then validate
- We want to explore the possibilities.
 - Model normal mission traffic according to several axes of variability
 - Score each attack according to these axes
 - Experiment for most suspicious values

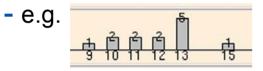
Axes of Variability

- The different ways an attack (e.g. to MySQL) might be formulated.
 - Provided a priori by a domain expert
- Query content
 - Word order (e.g. some permutations cause MySQL to crash)
 - Binary machine instructions
 - Unusual payload (e.g. unix commands, registry keys, database administrative commands)
- Query length (single/multiple terms)
- Resource consumption patterns
- Probing (e.g. password guessing)
- Session-wide (multiple queries)

Axes of Variability (detectors)

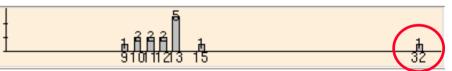
• We currently detect:

- Text Queries:
 - String length: overall query length
 - SQL parser: term length (table, col, row), number of terms (table, row, col)
 - Word order: if there are no other suspicious elements in the attack
- Packet Content (Using hex values of the packet):
 - Command type
 - Joint probability: each command has different expected byte patterns


Plausible to design new or better detectors:

- String content (e.g. look for hex)
- Unusual payload (parser, keyword filter, content-filtering)
- Session-wide (frequent patterns analysis)
- Word order (patterns analysis)
- More joint probability distributions (e.g. strings may generally be long, but passwords are short)

Modeling Mission Traffic


Model normal traffic

- Domain expert creates measures for each axis of variability (or combinations thereof)
- Currently stored as histograms of the computed values

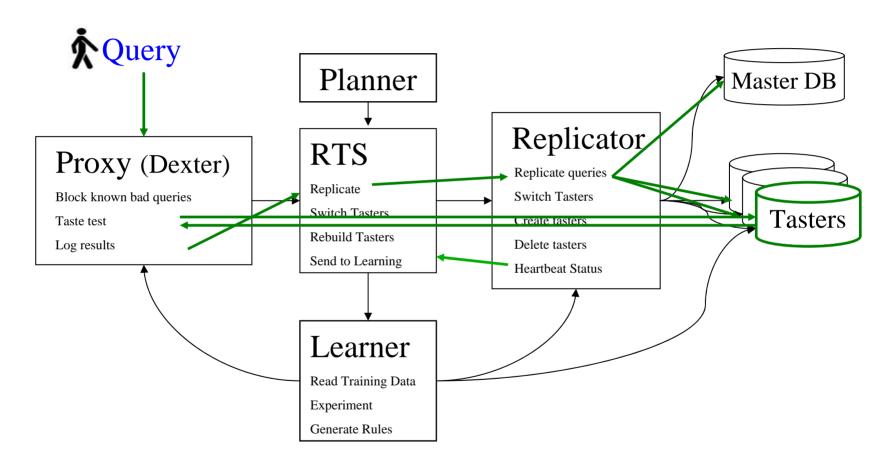
Compare attack to the model

- Compute a "suspicion score": how unusual is this attack for this axis of variability
- Score = (value μ) / σ
- e.g. add "32" to above histogram;

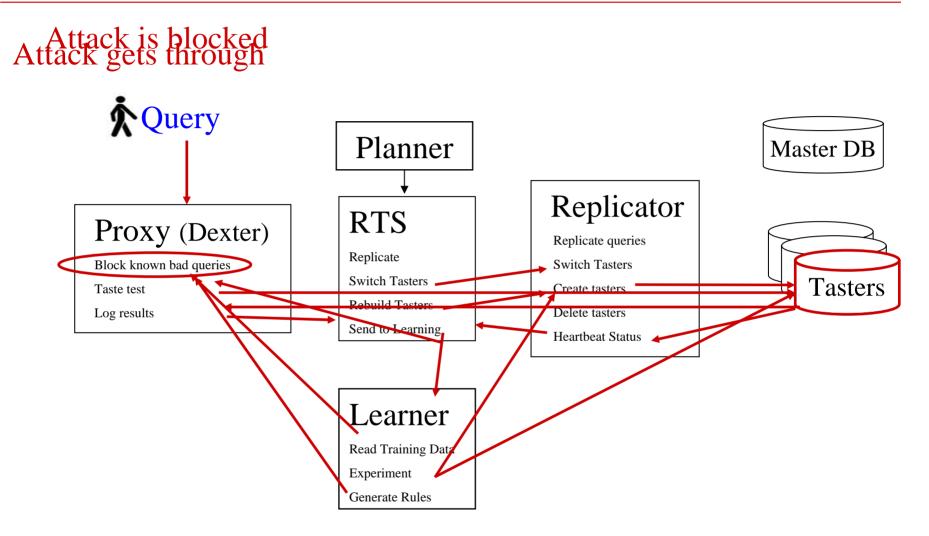
Experiment (Active Learning)

- Sort the suspicion scores.
- Experiment in the "most" suspicious axis first.
 - Test hypothesis of culprit
 - Discover the boundary conditions

Demo


- Complete system protecting MySQL with normal background traffic for our mission model.
- All three end-to-end use cases.
 - Integration of CIRCA planning for single mission phase.
 - Learning via active experimentation.

Two different attacks in Mission Model Phase 1


- Both kill MySQL 3.23.49 server but are very different.
 - Password buffer-overflow (BID 8590)
 - Exploits the lack of bounds-checking on the password field for a user.
 - Binary attack against COM_TABLE_DUMP command (BID 6368)
 - Exploits a casting vulnerability of signed integer values.
 - Sends a negative value as one of the string length parameters to the command, and corrupts internal MySQL memory.

Cortex Demo Architecture and Use Cases

Normal Query

Cortex Demo Architecture and Use Cases

