
Timed Asynchronous System

Models for Dependable

Mobile/Pervasive/* Systems

Christof Fetzer

Dresden University of Technology

Germany

Christof Fetzer, TU Dresden 2

Application Domain:

Technology Assisted Living

Home/garden sensor network

e.g.: Intel uses motion sensors to check the

health status of persons

Need for dependability

application is safety critical...

Some sort of physical security

Christof Fetzer, TU Dresden 3

Underlying Distributed System

Mobile nodes

Network technologies

Wireless and wired Ethernet

Wireline Network
B1 B2

G1 G2 G3

Christof Fetzer, TU Dresden 4

System Model Assumptions

Protocol/Application

Code

System Model

Enforcement

Distributed System

system/failure model assumptions

“real” hardware/software properties

Goals:

1) Simplify protocol development & permit correctness proofs

2) Probability that assumptions are violated are negligible

Christof Fetzer, TU Dresden 5

Application Dependency

Application

timeliness requirements

TM

liveness requirements

fail-safe

TM-Watchdog++

fail-op

FAR

internal

consistency

TFAR

external

consistency

cond. uncond.

Timed Asynchronous

System Model (TM)

[1]

Christof Fetzer, TU Dresden 7

Services

Local Hardware Clock Service

Christof Fetzer, TU Dresden 9

Local Hardware Clocks

We assume that each computer p has a
hardware clock Hp

A hardware clock can be implemented by
a hardware counter

incremented by an oscillator

Christof Fetzer, TU Dresden 10

Measurements

Christof Fetzer, TU Dresden 11

Failure Assumption

Failure Assumption:

Each correct process has a correct hardware

clock, i.e., clock with a bounded drift rate.

Bounded drift rate:

process can measure length of a time interval
[s,t] with a max. error of (t-s)

Christof Fetzer, TU Dresden 12

Hardware Clock Enforcement

Protocol Code

HWC Property

Enforcement

Clock

“real” properties

correct HWC

Christof Fetzer, TU Dresden 13

Clock Failure Semantics Enforcement

We can try to detect clock failures and

force a process to

crash if its hardware clock is faulty

We can try to mask clock failures

We can try to do both

Christof Fetzer, TU Dresden 14

Replicated Hardware Clock [2]

Christof Fetzer, TU Dresden 15

Replicated Hardware Clock

Pentium processor has counter that is
incremented in each cycle

Read counter with instruction: rdtsc

Computers have hardware real-time clock

Approach:
Can use different on-board clocks to enforce
clock failure assumption

Datagram Service

Christof Fetzer, TU Dresden 17

Datagram Service

Semantics:

At most once delivery of messages

Performance failure:

message transmission delay > .

Omission failure:

message transmission delay =

Note: No bound on the number of failures!

Christof Fetzer, TU Dresden 18

Datagram Failure Semantics

Enforcement

Protocol Code

FADS+MAC

UDP/IP

spoofing, duplicates,..

performance/omission

Christof Fetzer, TU Dresden 19

Partially Synchronous Systems

R
es

po
ns

e
tim

e

Time

unknown upper bound

Christof Fetzer, TU Dresden 20

Timed Model: No Upper Bound
tr

an
sm

is
si

on
 d

el
ay

Time

known constant

timely message

late message

Christof Fetzer, TU Dresden 21

Conditional Timeliness Requirements

Timeliness Requirement:

have to achieve something good in D seconds

Conditional Timeliness Requirement:

have to achieve something good in D seconds

if system is stable.

Process Service

Christof Fetzer, TU Dresden 23

Process Service

Failure assumption:

Processes have crash / performance failure

semantics

Christof Fetzer, TU Dresden 24

Process Failure Semantics Enforcement

Protocol Code

Encoded Processing

CPU

“arbitrary” failures

crash/performance

failures

Possibilities and Impossibilities

in the Timed Model

Christof Fetzer, TU Dresden 26

Most Standard Problems are

impossible to solvable in TM

For example, cannot solve

consensus,

strong leader election

eventually perfect failure detector

...

Reason:

Timed Model permits runs in which no

message is delivered!

Christof Fetzer, TU Dresden 27

Two Approaches

Change the problem:

enforce service properties whenever the

underlying system is stable (synchronous)

if properties might be violated, signal to clients

that properties are not guaranteed

we call that fail-awareness [3]

Add additional assumptions:

infinitely often the system is stable

Christof Fetzer, TU Dresden 28

Stability and instability periods
tr

an
sm

is
si

on
 d

el
ay

Time

timely message late message

stability stability

Christof Fetzer, TU Dresden 29

Conditional Timeliness Requirements

Timeliness Requirement:

have to achieve something good in D seconds

Conditional Timeliness Requirement:

have to achieve something good in D seconds

if system is stable.

Christof Fetzer, TU Dresden 30

Transmission delay...

depends on diameter, density, ...

expect more variance in mobile/* systems

How could nodes dynamically adjust ?

Christof Fetzer, TU Dresden 31

Need to agree on a new

Do we need the system to stabilize?

need to adjust when the system is unstable

Do we really need a hardware clock?

e.g., change of clock frequency in mobile

systems might complicate things...

use of minimal assumptions

Finite Average Response

Time Model (Far) Model

[5]

Christof Fetzer, TU Dresden 33

Observation 1:

Computers are not infinitely fast!

Christof Fetzer, TU Dresden 34

Max. Speed of ++ is bounded

exec

time
Possible trend: time to increment integer

processor

generation

G > 0

Christof Fetzer, TU Dresden 35

Weak Clock

Clock with some max. unknown speed:

int tick = 0 ;

process Tick() {

 forever { tick++; }

}

int ReadClock() { return tick; }

Christof Fetzer, TU Dresden 36

Arbitrary Clock Failures

 int tick = 0, last = 0; const int maxd = ...;
process Tick() { forever { tick++; } }

 int ReadClock() {

if (H() > tick) {

tick = min(H(), tick+(tick-last)*maxd);

} else { tick = max(H(), last); }

last = ++tick;

return last;

}

Christof Fetzer, TU Dresden 37

Weak Clock Semantics

For each clock tick, at least some

minimum unknown time G has passed

What is it good for?

timeouts!

Christof Fetzer, TU Dresden 38

Observation 2:

In all well engineered systems(*), average

transmission delay is finite.

(*) we need to take care of protocols without flow control

Christof Fetzer, TU Dresden 39

Communication System

We use stubborn channels

only reliable transmission of last message is

guaranteed

need to wait for delivery of last message before

transmitting new message

Christof Fetzer, TU Dresden 40

Finite Average Response Time

Assumption:

average response time of link between any two

correct processes is finite

average: limk (average of k first responses)

Result:

Assumptions 1+2 sufficient to implement an

eventually perfect failure detector [5]

Christof Fetzer, TU Dresden 41

Eventually Perfect Failure Detector

q

p

A B C D

B-A D-Cp ok

timeout timeout
p suspected

fast slow

Christof Fetzer, TU Dresden 42

Timeout Adaptation

R
es

po
ns

e
tim

e/
tim

eo
ut

Time-timeout proportional log of number of wrong suspicions

-timeout proportional number fast messages since last slow message

Christof Fetzer, TU Dresden 43

Finite Average Response (FAR)

Model [5]

Eventually perfect failure detector (and hence
consensus protocol) can be implemented in a
system with

NO upper/relative bound on transmission delay

NO upper/relative bound on processing delay

NO assumption that system stabilizes

NO clocks, failure detectors, etc

But
average response time must be finite

unknown min exec time for some operation

Timed Far Model

FAR Model [6]

Christof Fetzer, TU Dresden 45

Impossibility Result

Strong leader election problem, i.e.,

infinitely often there is a leader

at any point in time there is at most one leader

impossible to solve in FAR model [6]

adding a clock solves the problem

Timed FAR model

Christof Fetzer, TU Dresden 46

Conclusion

Application

timeliness requirements

TM

liveness requirements

fail-safe

TM-Watchdog++

fail-op

FAR

internal

consistency

TFAR

external

consistency

Christof Fetzer, TU Dresden 47

References

[1] F. Cristian and C. Fetzer, The Timed Asynchronous
Distributed System Model, IEEE Transactions on
Parallel and Distributed Systems

[2] C. Fetzer, F. Cristian, Building Fault-Tolerant Hardware
Clocks, DCCA1999

[3] C. Fetzer and F. Cristian, Fail-Awareness: An Approach
to Construct Fail-Safe Applications, Journal of Real-
Time Systems, 2003

[4] C. Fetzer, F. Cristian, A Fail-Aware Datagram Service,
IEE Proceedings - Software Engineering, 1999

[5] C. Fetzer, U. Schmid, M. Süßkraut, On the Possibility of
Consensus in Asynchronous Systems with Finite
Average Response Times, ICDCS 2005

[6] M. Süßkraut, C. Fetzer, Leader Election in the Timed
Finite Average Response Time Model

