
Reliability and Security: From

Measurements to Design

Ravi K. Iyer

Karthik Pattabiraman, Weining Gu,

Giampaolo Saggese, Zbigniew Kalbarczyk
Center for Reliable and High-Performance Computing

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Supported by: NSF, SRC, DARPA, SUN, IBM, HP

http://www.crhc.uiuc.edu/DEPEND

Crash Latency Distributions for
(Linux on Pentium P4 and PowerPC G4)

Early detection of

kernel stack overflow

on PPC major

contributor to reduced

crash latency

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

P
e

rc
e

n
ta

g
e

3k 10k 100k 1M 10M 100M 1G >1G

CPU Cycles

Latency in Stack

Pentium

PPC

Crash Severity:
Linux Kernel on Pentium

• Significant percentage (33%) of errors that alters the control path have

no effect

– Inherent redundancy in the code

• The most severe crashes are

due to reversing the condition

of a branch instruction

• The most severe crashes require

a complete reformatting of

the file system on the disk

– Can take nearly an hour to recover the system

– Profound impact on availability

– To achieve 5NINES of availability (5 minutes/yr downtime) one can

effort one such failure in 12 years

Valid but Incorrect Branch (Activated)

Hang / Unknow n

Crash

22.9%

Dumped Crash

33.9%

Fail Silent

Violation

9.9%

Not Manifested

33.3%

Crash Causes:
Linux on PowerPC G4 & Pentium 4

Crash Cause in Pentium
(Total 1982)

Kernel Panic

0.1% Invalid TSS

1.0%
Divide Error

0.1%

Invalid

Instruction

16.0%

Bad Paging

43.2%

Bounds Trap

0.1%General

Protect. Fault

12.1%

NULL Pointer

27.5%

Bad Paging

NULL Pointer

Invalid Instruction

General Protect. Fault

Kernel Panic

Invalid TSS

Divide Error

Bounds Trap

Crash Cause in PPC
(Total 872)

Alignment

1.6% Panic!!!

0.1%

Bus Error

0.7%

Machine Check

1.4%

Stack Overflow

12.7%

Bad Area

66.9%

Illegal

Instruction

16.3%

Bad Trap

0.4%

Bad Area

Illegal Instruction

Stack Overflow

Machine Check

Alignment

Panic!!!

Bus Error

Bad Trap

• NULL Pointer: NULL pointer de-reference;

• Bad Paging: Bad paging (except NULL pointer)

• General Protection Fault: Exceeding segment limit;

• Kernel Panic: Operating system detects an error;

• Invalid TSS: Selector, or code segment outside limit;

• Bounds Trap: Bounds checking error.

• Bad Area: Bad paging including NULL pointer;

• Stack Overflow: Stack pointer of a process

 out of range

• Machine Check: Errors on the processor-local bus;

• Alignment: Load/store operands not word-aligned;

• Bus Error: Protection faults;

• Bad trap: Unknown exceptions.

Breakdown of Vulnerabilities (Bugtraq)

Co nfiguratio n Erro r

5%

De s ign Erro r

18%

Input Va lida tio n Erro r

23%

Bo undary Conditio n

Erro r

21%

1%
Fa ilure to Handle

Exceptio na l Co nditio ns

11%

Ac ce ss Valida tio n Erro r

10%
3% 2%

Unkno wn

6%

Ac ces s Va lida tio n Erro r

Ato micity Erro r

Bo undary Co nditio n Erro r

Co nfigura tio n Erro r

De s ign Erro r

Enviro nme nt Erro r

Failure to Handle Exc eptional Co nditions

Input Validation Error

Origin Va lida tio n Erro r

Ra ce Co nditio n Erro r

Serializa tio n Erro r

Unkno wn

•Access Validation Error : an operation on an object outside its access domain.

•Atomicity Error : code terminated with data only partially modified as part of a defined operation.

•Boundary Condition Error : an overflow of a static -sized data structure: a classic buffer overflow condition.

•Configuration Error : a system utility installed with incorrect setup parameters.

•Environment Error : an interaction in a specific environment between functionally correct modules.

•Failure to Handle Exceptional Conditions : system failure to handle an exceptional condition generated by a functional module, device, or

user input.

•Input Validation Error : failure to recognize syntactically incorrect input.

•Race Condition Error : an error during a timing window between two operations.

•Serialization Error : inadequate or improper serialization of operations.

•Design Error and, Origin Validation Error : Not defined.

Bugtraq database included 5925 reports on

software related vulnerabilities
(as of Nov.30 2002)

Observations from Vulnerability Analysis

• Exploiting a vulnerability involves multiple vulnerable
operations on several objects.

• Exploits must pass through multiple elementary
activities, each providing an opportunity for performing
a security check.

• For each elementary activity, the vulnerability data and
corresponding code inspections allow us to define a
predicate, which if violated, naturally results in a
security vulnerability.

Example: FSM Model for the Sendmail

Vulnerability

Operation 1:

Write integer i to tTvect[x]

addr_setuid unchanged

tTvect[x]=i

Operation 2:

Manipulate the function pointer

addr_setuid changed

Execute code referred by

addr_setuid

convert str_i and str_x

to integer i and x

(integer represented by str_x) > 2
31

x 100

x > 100

?

Execute MCode

get text strings

 str_x and str_i

?

x < 0 or x > 100

0 x 100

Function pointer is corrupted

Load the function pointer

(integer represented

by str_x) 2 31

pFSM1

pFSM2

pFSM3

Some Lessons Learned

• Extracted common characteristics of a class of security

vulnerabilities

• Developed an FSM methodology to model vulnerabilities.

• Only three pFSM types were required. Enforced reasoning

indicate opportunities for security checking.

• Most vulnerabilities are in the interface between

applications and library functions

• Question: Can we develop Vulnerability-Masking

schemes based on the observed characteristics

Challenges: Understanding Failure Data

• Expectation is that transients will increase
– Shrinking device size Increased transient error rate

• More error checking that is closer to processor needed

• System level impact of increase in transients
– Increased error propagation near-coincident (correlated)

errors

– More latent errors

– Question: What are the corresponding high level fault models?

• Current recovery techniques oriented towards
single isolated errors

• Recovery of correlated (or latent) errors is
complex and adds significantly to unavailability

Challenges: Understanding Attack Data

• Analysis of data (from Bugtraq) on security attacks to:

– identify vulnerabilities and to classify the attacks according to

attacks causes

– understand potential inconsistencies in application/system

specifications resulting in security vulnerabilities of an actual

application/system implementation

• Measurement-based models depicting the attack process

• Software (e.g., compiler-based) and hardware (e.g.,

processor embedded) vulnerability masking/prevention

techniques

What is Needed?

• Application aware detection mechanisms

– generic fault-tolerance and security techniques, targeting a particular
fault/attack-model provide limited coverage

– application cannot selectively take advantage of mechanisms, which best
meet the needs

• Extract application properties that can be used as an
indicator of correct behavior

• Exploit the knowledge of such properties to derive efficient
error detection

– application-specific checks can complement the coverage provided by
generic techniques

• Assess the benefits (tradeoffs) of software or hardware
implementaion

Application Aware Checking in Software:
ARMOR Self-checking Middleware

• Adaptive Reconfigurable Mobile Objects of Reliability

– Processes composed of replaceable software modules.

– Provide error detection, recovery and security services to user

applications.

• ARMORs Hierarchy form runtime environment:

– System management,

detection, and recovery

services distributed across

ARMOR processes.

– ARMORs resilient

to their own failures.

Applications

Operating System

On-Chip / Off-Chip RSE Support

Reliable and Secure ARMOR

Infrastructure

ARMOR Self-checking Middleware:

“Embedded Solution”

ARMOR ARMOR

Application

Operating system

Processor

Middleware

Modular design of ARMOR processes around elements lends
itself well to small footprint solutions.

Special versions of elements optimized for memory and
performance requirements.

Specialized microkernel:

Remove support for inter-ARMOR communication through regular
messaging infrastructure

Static configuration of elements; no need to dynamically add/remove
elements

Application Aware Checking in Hardware:

Reliability and Security Engine

N. Nakka, J. Xu, Z. Kalbarczyk, R. K. Iyer, “An Architectural Framework for Providing Reliability and Security Support”, DSN2004.

Instruction -

Cache
Instruction -Fetch

Branch

Predictor

Instruction -Address

Translation Buffer

4-entry

Fetch Buffer

Dispatcher

Instruction

Decoder

Register

File

Load / Store

Unit

Integer

Unit

Multiply /

Divide Unit

Branch

Resolve Unit

Reorder

Buffer

Write -

Buffer

Data -

Cache

Commit -UnitData - Address

Translation Buffer
Arbiter

Instruction -

Cache
Instruction -Fetch

Branch

Predictor

Instruction -Address

Translation Buffer

4-entry

Fetch Buffer

Dispatcher

Instruction

Decoder

Dispatcher

Instruction

Decoder

Register

File

Load / Store

Unit

Integer

Unit

Multiply /

Divide Unit

Branch

Resolve Unit

Reorder

Buffer

Write -

Buffer

Data -

Cache

Commit -UnitData - Address

Translation Buffer
Arbiter

ROBAllocPtr1 (i)

ROBAllocPtr2 (i)

InstrReg1

InstrReg2

M
U

X3

MDUDataOut
ALUDataOut

LSUEffAddr

LoadFromALU (i)
LoadFromMDU (i)
LoadFromLSU (i)

LSUDataOut

LoadFromLSU (i)

M

U
X

5

LSUSrc2
ALUSrc2

MDUSrc2

IssueLSU (i)

IssueALU (i)
IssueMDU (i)

M
U

X2

Instruction
Checker

Module

Memory

Layout
Randomization

Data

Dependency
Tracker

Memory

Access
Unit

Instruction
Output

Queue

Memory Access Request Mem_Rdy

Memory
Access
Request

Memory
Data

Module
Outputs

RSE Framework

CUCommitInstr1

InstrToCommit (i)

M

U
X

4
CUCommitInstr2

Mem

Adaptive
Heartbeat

Monitor

RegFile_Data
Entry i

Execute_Out
Entry i

Fetch_Out
Entry i

Memory_Out
Entry i

Commit_Out

Entry i

Module
Enable/

Disable

InstrReg3

InstrReg4

ROBAllocPtr3 (i)

ROBAllocPtr4 (i)

M

U
X1 Hardware Modules

Input interface

Fetch / Dispatch Width 4 instructions

Issue width 4 instructions

RUU / LSQ size 16/8 entries

Instruction L1 cache Size: 8 KB, 1-way associative

Data L1 cache Size: 8 KB, 1-way associative

Instruction L2 cache Size: 64 KB, 2-way associative

Data L2 Cache Size: 128 KB, 2-way associative

check
checkValid

Bus-Interface

Unit

External

Bus

For Input Interface;

Queue Size = 16

32-bit regs = 80;

Gate Count = 12800

Reliability and Security Engine

• A common framework to provide a variety of application-

aware techniques for error-detection, masking of security

vulnerabilities and recovery under one umbrella, in a

uniform, low overhead manner.

• FPGA implementation as an integral part of a superscalar

microprocessor

• Hardware-implemented error-detection and security

mechanisms embedded as FPGA modules in the framework

• The framework serves two purposes

– Hosts hardware modules that provide reliability and security services,

and

– Implements interface of the modules with the main pipeline and the

executing software (OS and application)

TRUSTED ILLIAC

COMBINING HIGH PERFORMANCE WITH APPLICATION-
AWARE RELAIBILTY AND SECURITY

 HTTP://WWW.CSL.UIUC.EDU

Goal: Application-Aware Trusted Computing

• Create a large, demonstrably-trustworthy, enterprise computing

platform

– Application aware reliability and security

– Reconfigurable

– High performance

– Easy programming

• Support for

– Enterprise computing with seamless extension across wireline-wireless

domains

– Significant number of applications that co-exist and share the HW/SW

resources

• State of the Art: Provide HW and SW with a one-size-fits-all approach

– Creating a trustworthy environment is complex, expensive to implement

and difficult to validate

Application Aware Trusted Computing

• Applications-specific level of reliability and security

provided in a transparent manner, while delivering

optimal performance

• Customized levels of trust (specified by the application)

– enforced via an integrated approach involving

• re-programmable hardware,

• compiler methods to extract security and reliability properties

• configurable OS and middleware

• Scale from few nodes to large networked systems

• Enable inclusion of ad-hoc wireless nodes

Application-Aware Checking: An Example

F
ra

m
e

w
o

rk
 I

n
te

rf
a

c
e

 F
a

b
ri

c

Pipeline

Modules

On-core approach – processor,

framework, and modules part

of the same core.

A Reliability and Security Engine (RSE)

Reconfigurable processor-level hardware framework

Provides HW modules for reliability and security

Modules and framework interface configured to meet

application demands

Application Failure Mitigation Driver

Chkpt
Reco-

very

Crash

dete-

ction

Hang

dete-

ction

...

OS Driver

OS Kernel

Kernel

Control

Console

Configuration

Interface

OS level error

detection/recovery

Application-transparent OS-

level checkpointing

OS health monitoring

Trusted

middleware

Assertion-Based Checking

Automatic generation and

software/hardware implementation

of error detectors

RSE Framework

Fetch_Out

RegFile_Data

Execute_Out

Memory_Out

Commit_Out

CommitMEMEXIDIF

Instruction

Queue

Pre -emptive

Control -flow

Checking

Process

Health

Monitor

Selective

Replication

Manager

Mem

Mem_Rdy

Reg#/

Reg Vals
ALU Result

Addr / Next PC

Data Loaded

From Memory

Commit/

Squash

Pointer

Taintedness

Tracking

F
ra

m
e

w
o

rk

In
te

rf
a

c
e

 F
a

b
ri

c

Hardware

Modules

INST

Daemon

TCP Connection

Mgmt.

Named Pipe

Mgmt.

Process

Mgmt.

Detection

Policy

Microkernel

Process

Mgmt. Network

Daemon

Daemon

Remote daemons

Node 1 Node 2

Node 3

Microkernel

Recovery

Policy

Local Manager

Application
Execution

Controller

Hardware/Software Execution Model

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S

 m
o

d
u

le
s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S

 m
o

d
u

le
s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Soft object

Hard object

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

• Seamless integration of
hardware accelerators into the
Linux software stack

• Compiler supported deep
program analysis and
transformations to generate
CPU code, hardware library
stubs and synthesized
components

• OS resource management

Validation Framework

• An integral part of the Trusted ILLIAC

• Quantitative assessment of alternative designs and system solutions

• Provides tools for
– Analytical models (e.g., MOBIUS)

– Simulation (e.g., RINSE)

– Experimental validation (e.g., NFTAPE)
• Fault/error injection

• Attack generation

– Monitoring

– Measurement

• Crucial in making design decisions, which require understanding
tradeoffs such as cost (in terms of complexity and overhead) versus
efficiency of proposed mechanisms.

Trusted ILLIAC: The Broader Context

• New experience in system building: reliable and
secure processing architectures, smart compilers
combined with configurable OS and hardware

• Pushing the boundaries in customizable trusted
computing technologies

• Enable university, industry, and government

collaboration

• Train the next generation of students and

professionals

• (See next slide)

Example: Trusted ILLIAC Node

F
ra

m
e

w
o

rk
 I

n
te

rf
a

c
e

 F
a

b
ri

c

Pipeline

Modules

Application Failure Mitigation Driver

Chkpt
Reco-

very

Crash

dete-

ction

Hang

dete-

ction

...

OS Driver

OS Kernel

Kernel

Control

Console

Configuration

Interface

RSE Framework

Fetch_Out

RegFile_Data

Execute_Out

Memory_Out

Commit_Out

CommitMEMEXIDIF

Instruction

Queue

Pre-emptive

Control-flow

Checking

Process

Health

Monitor

Selective

Replication

Manager

Mem

Mem_Rdy

Reg#/

Reg Vals
ALU Result

Addr / Next PC

Data Loaded

From Memory

Commit/

Squash

Pointer

Taintedness

Tracking

F
ra

m
e

w
o

rk

In
te

rf
a

c
e

 F
a

b
ri

c

Hardware

Modules

INST

RSE Framework

Fetch_Out

RegFile_Data

Execute_Out

Memory_Out

Commit_Out

CommitMEMEXIDIF

Instruction

Queue

Pre-emptive

Control-flow

Checking

Process

Health

Monitor

Selective

Replication

Manager

Mem

Mem_Rdy

Reg#/

Reg Vals
ALU Result

Addr / Next PC

Data Loaded

From Memory

Commit/

Squash

Pointer

Taintedness

Tracking

F
ra

m
e

w
o

rk

In
te

rf
a

c
e

 F
a

b
ri

c

Hardware

Modules

INST

Daemon

TCP Connection

Mgmt.

Named Pipe

Mgmt.

Process

Mgmt.

Detection

Policy

Microkernel

Process

Mgmt. Network

Daemon

Daemon

Remote daemons

Node 1 Node 2

Node 3

Microkernel

Recovery

Policy

Local Manager

Application
Execution

Controller

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S

 m
o

d
u

le
s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

CPU
FPGA

accele-

rators

memory

devices

Linux OS

Linker/Loader

Application

DLL

O
S

 m
o

d
u

le
s

Compiler analysis/transformations

Synthesis

Soft object

Hard object
User level function or device driver:

Soft object

Hard object

Soft object

Hard object
User level function or device driver:

Source code

Resource manager

Compile

Time

User

Runtime

Kernel

Runtime

Human designed

hardware

Gateway

Gateway

Gateway

