Reliability and Security: From
Measurements to Design

Ravi K. lyer
Karthik Pattabiraman, Weining Gu,

Giampaolo Saggese, Zbigniew Kalbarczyk
Center for Reliable and High-Performance Computing
Coordinated Science Laboratory
University of lllinois at Urbana-Champaign

Supported by: NSF, SRC, DARPA, SUN, IBM, HP

http://www.crhc.uiuc.edu/DEPEND

Crash Latency Distributions for
(Linux on Pentium P4 and PowerPC G4)

Percentage

90%-
80%
70%:-
60%-
50%-
40%
30%:-
20%-
10%-

0%

Latency in Stack

3k

o Pentium
m PPC

10k

100k 1M 10M 100M
CPU Cycles

1G >1G

Early detection of
kernel stack overflow
on PPC major
contributor to reduced
crash latency

Crash Severity:
Linux Kernel on Pentium

Significant percentage (33%) of errors that alters the control path have
no effect

— Inherent redundancy in the code

Valid but Incorrect Branch (Activated)
The most severe crashes are
due to reversing the condition Hang / Unknown Not Marifested
] . Crash / 33.3%
of a branch instruction 22.9%
The most severe crashes require |
|
: \
a complete reformatting of . -
the file system on the disk B Sl
— Can take nearly an hour to recover thesystem

— Profound impact on availability

— To achieve 5NINES of availability (5 minutes/yr downtime) one can
effort one such failure in 12 years

Crash Causes:
Linux on PowerPC G4 & Pentium 4

Crash Cause in Pentium Crash Cause in PPC
Kernel Panic (Total 1982) | (Total 872)
. Alignment
0.1% Invalid TS Divide Error 1.6% Panic!!! Bus Error B Tr
1.0% 0.1% Bounds Trap 0.1% 0.7% aO 40/ap
General 0.1% Machine Check B
: 1.4%
Protlezctl;ault 2 Bad Paging 0 mBad Area
1% , -
m NULL Pointer Stack Overflow m lllegal Instruction
id O Invalid Instruction 12.7% o Stack Overflow
I Irtwa lt | 0 General Protect, Fault 0 Machine Check
nstructon-| . :
16.0% ﬂ B Kernel Panic llegal B Alignment
O Invalid TSS Instruction o Panic!l
.| m Divide Error 16.3% ‘ m Bus Error
: Bad Pagin \
NU|-2|-7 F;(:/lnter\ 43'20% J O Bounds Trap LBZ‘; g‘(r)/ia o0 Bad Trap
070 '

» Bad Area: Bad paging including NULL pointer;
 Stack Overflow: Stack pointer of a process

out of range
» Machine Check: Errors on the processor-local bus;
 Alignment: Load/store operands not word-aligned;
* Bus Error: Protection faults;
e Bad trap: Unknown exceptions.

* NULL Pointer: NULL pointer de-reference;

» Bad Paging: Bad paging (except NULL pointer)

» General Protection Fault: Exceeding segment limit;
» Kernel Panic: Operating system detects an error;

* Invalid TSS: Selector, or code segment outside limit;
» Bounds Trap: Bounds checking error.

Breakdown of Vulnerabilities (Bugtraq)

Unknown Access Validation Emor o Access Validation Error
6% 10% m Atomicity Error

3% 2% N OBoundary Condition Error
BoundagyCondltlon O Configuration Error
2r£;r B Design Emor
0

O Environment Error
m Failure to Handlke Exceptional Conditions

O Input Validation Error
Configuration Emor m Origin Validation Error

Input Validation Error
23%

Failure to Handle 5% m Race Condition Error

ilu e

Exceptio nal Co nditio ns Do Design Error O Serialzation Error
1% BY% 0 Unknown

*Access Validation Error : an operation on an object outside its access domain.

*Atomicity Error: code terminated with data only partially modified as part of a defined operation.

*Boundary Condition Error : an overflow of a static -sized data structure: a classic buffer overflow condition.

*Configuration Error: a system utility installed with incorrect setup parameters.

*Environment Error: an interaction in a specific environment between functionally correct modules.

Failure to Handle Exceptional Conditions : system failure to handle an exceptional condition generated by a functional module, device, or
user input.

«Input Validation Error : failure to recognize syntactically incorrect input.

*Race Condition Error: an error during a timing window between two operations.

«Serialization Error: inadequate or improper serialization of operations.

*Design E d, Origin Validation E : Not defined. -
FHIGN SHTOT AN, Drigin Talldation =ror- Tot TeHne Bugtraq database included 5925 reports on

software related vulnerabilities
(as of Nov.30 2002)

Observations from Vulnerability Analysis

* Exploiting a vulnerability involves multiple vulnerable
operations on several objects.

* Exploits must pass through multiple elementary
activities, each providing an opportunity for performing
a security check.

* For each elementary activity, the vulnerability data and
corresponding code inspections allow us to define a
predicate, which if violated, naturally results in a
security vulnerability.

Example: FSM Model for the Sendmail
Vulnerability

Operation 1: "
Write integer i to tTvect[x] o 072 T,

x> 100

get text strings
str_x and str_i

convert str_i and str_x
to integer i and x @

>*O

Operation 2:
Manipulate the function pointer

O Load the function pointer

Execute code referred
addr_setuid

Execute MCode

Some Lessons Learned

Extracted common characteristics of a class of security
vulnerabilities

Developed an FSM methodology to model vulnerabilities.

Only three pFSM types were required. Enforced reasoning
Indicate opportunities for security checking.

Most vulnerabilities are in the interface between
applications and library functions

Question: Can we develop Vulnerability-Masking
schemes based on the observed characteristics

Challenges: Understanding Failure Data

Expectation is that transients will increase

— Shrinking device size - Increased transient error rate
» More error checking that is closer to processor needed

System level impact of increase In transients

— Increased error propagation — near-coincident (correlated)
errors

— More latent errors

— Question: What are the corresponding high level fault models?
Current recovery techniques oriented towards
single isolated errors

Recovery of correlated (or latent) errors Is
complex and adds significantly to unavailability

Challenges: Understanding Attack Data

* Analysis of data (from Bugtraq) on security attacks to:

— 1dentify vulnerabilities and to classify the attacks according to
attacks causes

— understand potential inconsistencies in application/system
specifications resulting in security vulnerabilities of an actual
application/system implementation

 Measurement-based models depicting the attack process

e Software (e.g., compiler-based) and hardware (e.g.,
processor embedded) vulnerability masking/prevention
technigues

What is Needed?

Application aware detection mechanisms

— generic fault-tolerance and security techniques, targeting a particular
fault/attack-model provide limited coverage

— application cannot selectively take advantage of mechanisms, which best
meet the needs

Extract application properties that can be used as an
Indicator of correct behavior

Exploit the knowledge of such properties to derive efficient
error detection

— application-specific checks can complement the coverage provided by
generic techniques

Assess the benefits (tradeoffs) of software or hardware
Implementaion

Application Aware Checking in Software:
ARMOR Self-checking Middleware

« Adaptive Reconfigurable Mobile Objects of Reliability
— Processes composed of replaceable software modules.
— Provide error detection, recovery and security services to user
applications.
« ARMORSs Hierarchy form runtime environment:
— System management,

detection, and recovery Applications Interfaces

services distributed across
ARMOR processes.

— ARMORSs resilient
to their own failures.

. Platform
Operatmg SYStem Interfaces

On-Chip / Off-Chip RSE Support

ARMOR Self-checking Middleware:
“Embedded Solution”

ARMOR Microkernel

== I
el || el el

=
-~
-
-

ARMOR Process

lA -
Middleware
ey Operating system
R—

Modular design of ARMOR processes around elémerits lends
itself well to small footprint solutions.

Special versions of elements optimized for memory and
performance requirements.

Specialized microkernel:

Remove support for inter-ARMOR communication through regular
messaging infrastructure

Static configuration of elements; no need to dynamically add/remove
elements

Application Aware Checking in Hardware:
Reliability and Security Engine

RSE Framework

g
™ Cache ‘: = = PredigBr= == =4 = = = = -
For Input Interface; —t wey o [27 I
. ‘uction -Address Fetch Buffer
Queue Size =16 nslation Buffer
32-bit regs = 80;
Gate Count = 12800 SR
Instiuction Register
[R S N o -+ Sl R Gy -~ JEpapup) A
™ Dispatcher ¢
1 1 [LPooooocsososasos wln
I [I [
.| Load/Sore Inieger Multiply / Larfd: S
Unit Unit Divide Unit ResoveUnit _ _ L _|_ . |
-1
L Daa - Write - il Reorder |
Cathe Buffer 0 A :Buﬂ‘er LI
f } A N e
1 1 L |
Daia - Address 0 C it -Unit
Tr. ion Buffer Arb!ter : 0 omm " Cood
Feith/ DgpatthWidth Airgrocions e :
Eevidh. 4instudions Bus-Interface |+ ___]
RW/1SQsz 16/8entries Unit
hsrudionL 1. cade Size: 8KB, 1-wayasodative
Daallade Sze: 8KB, 1-wayassodaiive
Ihsrudion 2 cache Size: 64KB, 2-nayassodaie Em;;ml Memay Access Recuest
Daal2Cace Size: 128KB, 2-wayassdaie o

IsstelSU(i

Instruction
Output
Queue

Input interface

Hardware Modules

Instruction
Checker
Module

Adaptive
Heartbeat
Monitor

Module
Enable/

Diseble

N. Nakka, J. Xu, Z. Kalbarczyk, R. K. lyer, “An Architectural Framework for Providing Reliability and Security Support”, DSN2004.

Reliability and Security Engine

A common framework to provide a variety of application-
aware techniques for error-detection, masking of security
vulnerabilities and recovery under one umbrella, in a
uniform, low overhead manner.

FPGA implementation as an integral part of a superscalar
microprocessor

Hardware-implemented error-detection and security
mechanisms embedded as FPGA modules in the framework

The framework serves two purposes

— Hosts hardware modules that provide reliability and security services,
and

— Implements interface of the modules with the main pipeline and the
executing software (OS and application)

TRUSTED ILLIAC

COMBINING HIGH PERFORMANCE WITH APPLICATION-
AWARE RELAIBILTY AND SECURITY

HTTP://WWW.CSL.UIUC.EDU

Goal: Application-Aware Trusted Computing

« Create a large, demonstrably-trustworthy, enterprise computing
platform

— Application aware reliability and security
— Reconfigurable
— High performance
— Easy programming
e Support for

— Enterprise computing with seamless extension across wireline-wireless
domains

— Significant number of applications that co-exist and share the HW/SW
resources

o State of the Art: Provide HW and SW with a one-size-fits-all approach

— Creating a trustworthy environment is complex, expensive to implement
and difficult to validate

Application Aware Trusted Computing

Applications-specific level of reliability and security
provided in a transparent manner, while delivering
optimal performance

Customized levels of trust (specified by the application)

— enforced via an integrated approach involving
* re-programmable hardware,
» compiler methods to extract security and reliability properties
» configurable OS and middleware

Scale from few nodes to large networked systems
Enable inclusion of ad-hoc wireless nodes

Application-Aware Checking: An Example

0

»
[¥]

L]

On-core approach — processor, u : @ Assertion-Based Checking
' S - 11 7 . .
fr?trp]ework, and modules part D w &8 . = = Automatic generation and
. 16 " . .
ot the same core. . Y @ X @z software/hardware implementation
mhee . % @ 2 . of error detectors
s Modules 4 " s
=1 £ . ® &
Q 4 - &
—— S B s TSI
g . 25 Node 2
0— % m
% . Y 00 N owscen I Process amed Pipe ot
> T » Daemon Node 3
\
\“ AN ~ R Remote daemons
\‘\ ‘ IF ‘ ID ‘ EX ‘ MEM ‘ \Caﬁrmit\L Application Tr_USted
» N)|]| middleware
\\ NST Regeg/als MAE:J/ xsxltléc I?riﬁrinl-r\(l)lemury Sq?arg::/ S~o -
‘ i Fetch_Out X g
Mem RegFile_Data é j
ey Menaser e] Chikpt| ReCO” %Latseh 3223
Commit_Out very : :
: 3 3) 1 ction | ction Configuration
zfn-tfgl] ‘-)ftlit\Jlsv P|_T|()eC:|;S Seklecti\(e Taiizzt:;ss (R L Interface /
ineucton C“eic"‘”g M"”i‘““ Rep"?m T’a%‘“'"g Modules Application Failure Mitigation Driver Q// ggr':::;?; ;
RSE Framework
. . . . OS Driver
A Reliability and Security Engine (RSE) =270 “ - QS level-error
. OS Kernel .
= Reconfigurable processor-level hardware framework @\ detection/recovery
: . - . Kernel . .
= Provides HW modules for reliability and security femel Ly Application-transparent OS-

= Modules and framework interface configured to meet level checkpomtmg
application demands = OS health monitoring

Hardware/Software Execution Model

Compile
Time

| Source code

| b |

User
Runtime

Application

1
Linker/Loader :
1

/
Resource manager |4

Kernel
Runtime

7 (4

/
/
/

Sonpow S

User level function or device driver:

- Soft object
|:| Hard object

Seamless integration of
hardware accelerators into the
Linux software stack

Compiler supported deep
program analysis and
transformations to generate
CPU code, hardware library
stubs and synthesized
components

OS resource management

Validation Framework

An integral part of the Trusted ILLIAC
Quantitative assessment of alternative designs and system solutions

Provides tools for

— Analytical models (e.g., MOBIUS)

— Simulation (e.g., RINSE)

— Experimental validation (e.g., NFTAPE)

» Fault/error injection
» Attack generation

— Monitoring
— Measurement
Crucial in making design decisions, which require understanding

tradeoffs such as cost (in terms of complexity and overhead) versus
efficiency of proposed mechanisms.

- = {rusted ILLIAC: The Broader Context

* New experience In system building: reliable and
secure processing architectures, smart compilers
combined with configurable OS and hardware

 Pushing the boundaries in customizable trusted
computing technologies

« Enable university, industry, and government
collaboration

« Train the next generation of students and
professionals

* (See next slide)

Example: Trusted Il LIAC Node

Pipeline

Regtl || aumesit
Rag Vs pdeINenrc) Fomiknor

Fetch_out

RegFie_Daia
Exccute_out cecol Eresn| Hang
T o o kpt oy | (deteq fdeted
I 1 [e Configuration
o

Framework

@E’E‘ %ﬁ/ b plication Failure Mitigation Driver‘ ‘E‘)E:f ”
) RSE Framework ‘ 12 i 4 i
0S Driver
0S Kernel
Gateway
[Source code | 1

Compile
Time it i) i
User e
Runtime P
P
Gatewa
P
//
//
//
Linker/Loader ///
///
Kernel FResa st §
Runtime 1| [I [i

7 Gateway

- Soft object
|:| Hard object

User level function or device driver:

