
Experimental software
risk assessment

Henrique Madeira
University of Coimbra, DEI-CISUC

Coimbra, Portugal

Universidade
de Coimbra

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Component-based software development

• Vision: development of systems using pre-fabricated components.
Reuse custom components or buy software components available
from software manufactures (Commercial-Off-The-Shelf: COTS).

• Potential advantages:
Reduce development effort since the components are already
developed, tested, and matured by execution in different contexts
Improve system quality
Achieve of shorter time-to-market
Improve management of increased complexity of software

• Trend → use general-purpose COTS components and develop
domain specific components.

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Some potential problems
• COTS

In general, functionality descrition is not fully provided.
No guarantee of adequate testing.
COTS must be assessed in relation to their intended use.
The source code is normally not available (makes it impossible
white box verification & validation of COTS).

• Reuse of custom components in a different context may
expose components faults.

Using COTS (or reusing custom components) represent a risk!
How to assess (and reduce) that risk?

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Network

Application
databases

Web objects
storage

HTTP
servers

Application
server

Server sideClient side

A real example:
COTS in very large scale systems

Coarse grain COTS:
− Middleware comp.
− Web servers
− DBMS
− OS

Fine grain COTS:
− Some middleware

comp.
− User interface small

components.
− Libs.
− Etc.

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Case-study 1: I-don’t-care-about
software architecture diagram

Software components

Different sizes

Different levels of granularity

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Case-study 2: I-really-don’t-care-about
software architecture diagram

More of the same

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Question 1
This is a COTS!

What’s the risk of
using it in my system?

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Question 2

This is custom component previously built!
What’s the risk of reusing it in my system?

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Question 3

This is a new custom component!
What’s the risk of using it
without further testing?

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Experimental risk assessment

Risk = prob. of bug * prob. of bug activation * impact of bug activation

Component 1
Custom

Component 3
COTS

Component 4
Custom

Exception
handler

Component 2
COTS

Example of question:
What’s the risk of using Component 3 in my system?

Software complexity
metrics

Injection of
software faults

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Two possible injection points

1. Injection of interface faults in software components
(classical robustness testing: Ballista, Mafalda, …)

Interface faults

SW component
under test

OutputInput

Software faults

Target SW
component

OutputInput

2. Injection of realistic software faults inside software
components (new approach)

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Why injection or real software faults?

Component 1
Custom

Component 3
COTS

Component 4
Custom

Exception
handler

Component 2
COTS

Injection of SW faults

Injection of SW faults

• Error propagation through non conventional channels is a reality.
• Faults injected inside components are more representative.

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

How to inject software faults?
• Use G-SWFIT (ISSRE 2002, DSN 2003, DSN 2004)

Injects the top N most common software faults.
This top N is based on field data (our study + ODC data from
IBM) and corresponds to ~65% of the bugs found in field data.
Injects faults in executable code.
Largely independent on the programming language, compiler,
etc that have generated the executable code.

• G-SWFIT is now a reasonably mature technique.

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

G-SWFIT
Generic software fault injection technique

01011
00010
01001

Target
executable

code

Low-level code
mutation engine

Low level
mutated versions

. . .Library of software fault
injection operators

01X11
00010
01001

01011
0X010
01001

01011
0001X
01001

01011
00010
0X001

Emulate common
programmer mistakes

The technique can be applied to binary files prior to execution or to
in-memory running processes

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Experimental risk assessment (again)

Risk = prob. of bug * prob. of bug activation * impact of bug activation

Component 1
Custom

Component 3
COTS

Component 4
Custom

Exception
handler

Component 2
COTS

Example of question:
What’s the risk of using Component 3 in my system?

Software complexity
metrics

Injection of
software faults

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Estimation of the probability of residual
bugs

Component 1
Custom

Component 3
COTS

Component 4
Custom

Exception
handler

Component 2
COTS

Target code

• Many studies indicate that fault
probability correlates with the software
module complexity

• Metrics of software complexity base on:
• Static feature of the code;
• Dynamic features;
• Possible information on the development

process (type of tests, etc);
• ...

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Estimation of bug activation probability
and bug impact

Component 1
Custom

Component 3
COTS

Component 4
Custom

Exception
handler

Component 2
COTS

Software faults

• Test campaigns to evaluate the activation probability and
the impact of software faults (bugs) inside the component in
the rest of the system.

• Use software metrics to choose the modules to inject faults
and define trigger locations accordingly.

Target code

Henrique Madeira 48th Meeting of IFIP Working Group 10.4, Hakone, Japan, July 1-5, 2005

Conclusions and current work on
experimental risk assessment

• Experimental software risk assessment seems to be viable.

• Risk is a multi-dimensional measure. Many software risks
can be assessed, depending on the property I’m interested in.

• Current work:
Improve the G-SWFIT technique:

– Improving current tool.
– Expansion of the mutation operator library
– Construction of a field-usable tool for software fault emulation in Java

environments

Study of software metrics and available tools.
Define a methodology for experimental software risk assessment.
Real case-studies to demonstrate the methodology.

