

Provenance-Aware Fault Tolerance
for Grid Computing

Professor Jie Xu (jxu@comp.leeds.ac.uk)

Director of the WRG e-Science Centre of Excellence

University of Leeds & University of Newcastle upon Tyne, UK

The White Rose Grid Project

• The three Yorkshire Universities’ project
(started in 2001, over £10M investment and
research projects) http://www.wrgrid.org.uk/

• Involves Leeds (Profs K Brodlie, P M Dew & J Xu),
York (Prof J Austin), and Sheffield (Profs G
Tomlinson & P Fleming); under the guidance of the
Chief Executive of WRUC (Dr Julian White – CEO of
WRUC)

• White Rose University Consortium – a strategic
partnership of the three Universities -
http://www.whiterose.ac.uk

• Excellent partnership with Computing Services &
Comp Science (Dr S Chidlow, C Cartledge, Dr A
Turner)

• Partners: Esteem Systems in conjunction with Sun
Microsystems & Streamline Computing

• Supported by Yorkshire Forward, Y&H Reg Dev
Agency

The WRG Architecture

General
Purpose
HPC
node

Computer
Science
node

CFD node

Engineering
Application
node

Our Centre:
•To offer focus for a

variety of e-science
issues and activities in
our region

 • To develop close links

with the UK e-Science CP

 • To develop a particular

specialism: visualisation,
distributed diagnostics
and system dependability

The White Rose Grid

e-Science Centre of

Excellence

UK e-Science Centres

UK e-Science Centres (courtesy of NeSC)

National Grid Service

Data node

Data node

Compute node

Compute node

Computation

Starlight (Chicago)
Netherlight

(Amsterdam)

White Rose
Leeds

PSC

SDSC

UCL

Network PoP Service Registry

NCSA

Manchester

UKLight

Oxford

RAL

US TeraGrid

UK NGS

Steering clients

AHM 2004

Local laptops
and Manchester
vncserver

All sites connected by

production network
(not all shown)

Our contribution:

Peptide-protein binding affinities

- all done in 48 hours on UK NGS

& US TeraGrid

Both the US TeraGrid
and UK NGS use GT2

middleware

China

• A potential approach for achieving fault tolerance in a Grid/Web

services environment is to invoke multiple functionally-equivalent

services and to act upon the results returned from them, e.g. by

comparison or voting.

• A problem for this fault tolerance approach, however, is that in

most SOA models, the implementational details of a service are

hidden from a client of the service.

• The only information available to a client is the service’s interface

and – possibly – some QoS metadata.

• This is an issue as services that initially appear disparate may –

during the course of their execution – invoke one or more

identical, “shared” services.

The ‘Shared Service’ Problem (1)

• The result is that different services may use the same shared

services behind the scenes, which may make common mode

failure (CMF) much more likely.

1

2

3

Client

The ‘Shared Service’ Problem (2)

• One possible way of resolving this problem is to incorporate the

technique of provenance in the fault tolerance approach used.

• Provenance is the documentation of the process that leads to a

result.

• If we assume that data provenance is recorded, it will allow a fault

tolerance scheme to build up a “view” of how each result it

receives has been constructed.

• By possessing this view, a number of actions can be taken upon

the results returned, e.g. weightings can be assigned to each

service based upon how closely related it is to another service;

services that have many common-dependencies can therefore

have less “sway” in the voting algorithm used.

A Solution to This Problem

• In this “view”, s1 and s2 have 2 common dependencies, whilst s3

has no common dependencies.

• As a trivial example, we could therefore assign weightings of 0.5 to

s1 and s2, and 1.0 to s3.

• In this case, should s1 and s2 agree, but s3 disagree with a result,

then no overall “trusted” result will emerge.

Weighted Voting

1

2

3

Client

• We have

implemented a java-

based framework that

facilitates the creation

of fault tolerance

schemes based on

diverse services. This

is called FT-Grid.

• The current

implementation

consists of both an

API allowing

developers to easily

search for, invoke,

and vote on services

at run-time, and also

a GUI to demonstrate

the system.

FT-Grid: A framework for achieving fault tolerance

Comparison of Three Schemes

• Using FT-Grid, we developed a system that built up weightings

based on the historical results of each service (the frequency with

which a service’s results agreed with the consensus). 15 Web

services were involved and a Grid provenance system, called

PASOA (developed at Southampton), was employed.

• We developed three systems in total:

• A system without fault tolerance

• A ‘traditional’ MVS system

• A provenance-aware MVS system

• The traditional MVS system discarded results from services that had

a weighting below a user-specified value, whilst the provenance-

aware scheme discarded results where any service in a workflow

fell below a user-specified value.

• This experiment yielded a large set of empirical data, and stress-

tested both FT-Grid and the underlying infrastructure.

Some Experimental Results

• We performed 3 runs of 1000 tests on each scheme:

Correct result No result CMF

Experiment 1 Run 1 828 172 -

Experiment 1 Run 2 858 142 -

Experiment 1 Run 3 822 178 -

Average 836 164 -

Experiment 2 Run 1 928 9 63

Experiment 2 Run 2 921 14 65

Experiment 2 Run 3 921 7 72

Average 923.33 10 66.66

Experiment 3 Run 1 996 4 0

Experiment 3 Run 2 990 10 0

Experiment 3 Run 3 996 4 0

Average 994 6 0

Weightings for Import Duty Services

0.5

0.6

0.7

0.8

0.9

1

1 67 133 199 265 331 397 463 529 595 661 727 793 859 925 991

Iterations

G
e
n

e
ra

te
d

 w
e
ig

h
ti

n
g

ID1

ID2

ID3

ID4

ID5

Weightings for Exchange Rate Services

0.4

0.5

0.6

0.7

0.8

0.9

1

1 68 135 202 269 336 403 470 537 604 671 738 805 872 939

Iterations

G
e
n

e
ra

te
d

 w
e
ig

h
ti

n
g

ER1

ER2

ER3

ER4

Brief Result Analysis

• The scheme without fault tolerance obtained a correct result in

83.6% of all tests performed.

• The traditional MVS scheme obtained a correct result in 92.3%

of all tests performed, and a common-mode failure (CMF)

occurred in 6.6% of results.

• The provenance-aware MVS scheme obtained a correct result

in 99.4% of tests performed, and had no CMF.

• These results are encouraging, but it must be remembered that

the test scenario was very simple, and in a more realistic

environment (with more reliable services), the advantage of the

provenance-aware scheme is likely to be reduced.

• We are making progress…

Questions?

