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The White Rose Grid Project

• The three Yorkshire Universities’ project
(started in 2001, over £10M investment and
research projects) http://www.wrgrid.org.uk/

• Involves Leeds (Profs K Brodlie, P M Dew & J Xu),
York (Prof J Austin), and Sheffield (Profs G
Tomlinson & P Fleming); under the guidance of the
Chief Executive of WRUC (Dr Julian White – CEO of
WRUC)

• White Rose University Consortium – a strategic
partnership of the three Universities -
http://www.whiterose.ac.uk

• Excellent partnership with Computing Services  &
Comp Science (Dr S Chidlow, C Cartledge, Dr A
Turner)

• Partners: Esteem Systems in conjunction with Sun
Microsystems & Streamline Computing

• Supported by Yorkshire Forward, Y&H Reg Dev
Agency
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Our Centre:
•To offer focus for a

variety of e-science
issues and activities in
our region

 • To develop close links

with the UK e-Science CP

 • To develop a particular

specialism: visualisation,
distributed diagnostics
and system dependability
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• A potential approach for achieving fault tolerance in a Grid/Web

services environment is to invoke multiple functionally-equivalent

services and to act upon the results returned from them, e.g. by

comparison or voting.

• A problem for this fault tolerance approach, however, is that in

most SOA models, the implementational details of a service are

hidden from a client of the service.

• The only information available to a client is the service’s interface

and – possibly – some QoS metadata.

• This is an issue as services that initially appear disparate may –

during the course of their execution – invoke one or more

identical, “shared” services.

The ‘Shared Service’ Problem (1)



• The result is that different services may use the same shared

services behind the scenes, which may make common mode

failure (CMF) much more likely.
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The ‘Shared Service’ Problem (2)



• One possible way of resolving this problem is to incorporate the

technique of provenance in the fault tolerance approach used.

• Provenance is the documentation of the process that leads to a

result.

• If we assume that data provenance is recorded, it will allow a fault

tolerance scheme to build up a “view” of how each result it

receives has been constructed.

• By possessing this view, a number of actions can be taken upon

the results returned, e.g. weightings can be assigned to each

service based upon how closely related it is to another service;

services that have many common-dependencies can therefore

have less “sway” in the voting algorithm used.

A Solution to This Problem



• In this “view”, s1 and s2 have 2 common dependencies, whilst s3

has no common dependencies.

• As a trivial example, we could therefore assign weightings of 0.5 to

s1 and s2, and 1.0 to s3.

• In this case, should s1 and s2 agree, but s3 disagree with a result,

then no overall “trusted” result will emerge.

Weighted Voting
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• We have

implemented a java-

based framework that

facilitates the creation

of fault tolerance

schemes based on

diverse services. This

is called FT-Grid.

• The current

implementation

consists of both an

API allowing

developers to easily

search for, invoke,

and vote on services

at run-time, and also

a GUI to demonstrate

the system.

FT-Grid: A framework for achieving fault tolerance



Comparison of Three Schemes

• Using FT-Grid, we developed a system that built up weightings

based on the historical results of each service (the frequency with

which a service’s results agreed with the consensus). 15 Web

services were involved and a Grid provenance system, called

PASOA (developed at Southampton), was employed.

• We developed three systems in total:

• A system without fault tolerance

• A ‘traditional’ MVS system

• A provenance-aware MVS system

• The traditional MVS system discarded results from services that had

a weighting below a user-specified value, whilst the provenance-

aware scheme discarded results where any service in a workflow

fell below a user-specified value.

• This experiment yielded a large set of empirical data, and stress-

tested both FT-Grid and the underlying infrastructure.



Some Experimental Results

• We performed 3 runs of 1000 tests on each scheme:

Correct result No result CMF

Experiment 1 Run 1 828 172 -

Experiment 1 Run 2 858 142 -

Experiment 1 Run 3 822 178 -

Average 836 164 -

Experiment 2 Run 1 928 9 63

Experiment 2 Run 2 921 14 65

Experiment 2 Run 3 921 7 72

Average 923.33 10 66.66

Experiment 3 Run 1 996 4 0

Experiment 3 Run 2 990 10 0

Experiment 3 Run 3 996 4 0

Average 994 6 0
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Brief Result Analysis

• The scheme without fault tolerance obtained a correct result in

83.6% of all tests performed.

• The traditional MVS scheme obtained a correct result in 92.3%

of all tests performed, and a common-mode failure (CMF)

occurred in 6.6% of results.

• The provenance-aware MVS scheme obtained a correct result

in 99.4% of tests performed, and had no CMF.

• These results are encouraging, but it must be remembered that

the test scenario was very simple, and in a more realistic

environment (with more reliable services), the advantage of the

provenance-aware scheme is likely to be reduced.

• We are making progress…



Questions?


