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The Embedded Environment: Cell Phones
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Modular design of processes lends itself well to small footprint solutions.

Specialized Applications optimized for memory/performance
requirements.

Specialized/Customized kernels



Crash Latency

Stack Injection (Linux on Pentium and PowerPC)
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What is Needed?

¢ A hardware/software framework that adapts dynamically
to application needs

¢ Extracting application properties that can be used as an
Indicator of correct behavior and to drive synthesis of
application-aware checks

¢ Instantiating the optimal hardware/software for runtime
application checking

¢ Embed the devised checks into the custom hardware or
software middleware or operating system



Adaptive Application Aware Checking in Hardware:
Basics

¢ Static source-code analysis and profiling provides

A Which checkers to be used and at what points of application
execution

A Checkers are adapted to application

¢ Hardware modeling using HDL

¢ Synthesize modules into reconfigurable hardware
framework

¢ Modules themselves are runtime reconfigurable



Adaptive Application Aware Checking in Hardware:
Reliability and Security Engine

RSE Framework
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N. Nakka, J. Xu, Z. Kalbarczyk, R. K. lyer, “An Architectural Framework for Providing Reliability and Security Support”, DSN2004.



The Processor-Level Framework

¢ Implemented as an integral part of the processor on the same die

¢ Embeds hardware modules for reliability, security and recovery
that execute in parallel with the instruction execution in the main
pipeline

¢ Provides a generic interface to external processor system through
which modules access runtime information for checking

¢ Application interfaces to framework through CHECK instructions
A Extension of the ISA
A Used by the application to invoke specific modules



Detection of Instruction Dependency Violations

¢ RAW dependency imposes sequential order on execution of
Instructions

¢ Errors in processor control logic, binary of instruction can lead to a
violation

¢ Sequence Checker Module (SCM), detects such violations

A monitors issue and execute events in pipeline

¢ Representative instruction sequences extracted using static analysis

¢ CHECKSs used to dynamically reconfigure the module with
sequences



SCM Detection Mechanism
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¢ SCM state for sequence — (i, e)

A | : Instruction on which event
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¢ Property - at any instance of time,
at most one instruction of a
dependent sequence can be issued
or executed

¢ Instructions in issue and execute
gueues matched against instructions
of sequence

¢ at most one instruction from the
queue should match the correct
state

¢ Error Detected when there is :
A more than one match

A a match other than expected
state



SCM Reconfiguration Architecture

¢Achieved with help of CHECK
Instructions

¢Extracted sequences loaded as part of Application Processor
program image
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Process Crash/Hang Detection (1)
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¢ Infinite Loop Hang Detection (ILHD) by tracking loop entry and exit points

¢ Sequential Code Hang Detection (SCHD) detects illegal repetition of sequence of
Instructions

¢ Instruction Count Heartbeat (ICH) leverages processor performance registers to
detect process/OS crashes/hangs



Process/Crash Hang Detection (2)

¢ Process hang in legal loops
A Infinite loop Hang Detector (ILHD)
A Profile-based analysis of application to estimate loop execution time
A Module reconfigured with timeout for loop as it is entered - CHECK Loop Entry
and Loop Exit
¢ Process hang in illegal loops
A Sequential code hang detector (SCHD)
A Parameterize module with length of loop
A Any loop shorter than given length indicates control error



Process Crash/Hang Detection

¢ Crash detection
A Instruction Count Heartbeat (ICH)
A Uses processor performance counters to detect process and OS crashes
A Can be extended to support failure detection in distributed systems

Performed by
ICH Module

Performed
by OS




Adaptive Application Aware Checking in Software:
Runtime Executive (RTE) — Middleware

¢ Reconfigurable statically and dynamically to provide range of
customizable error checks to operating system and applications, e.g.,

A Heartbeats - (i) adaptive - the timeout value adapts to changes in the network
traffic or node load and (ii) smart - the monitored entity excites a set of checks
before sending the heartbeat) .

A Data-Flow Signatures — a pattern of reads and writes to variables in a code
block (program object, thread, function, basic block or instruction)

¢ Self-checking (self-healing)

¢ Example - reconfigurable ARMOR architecture

A K. Whisnant, Z. Kalbarczyk, R. lyer, “A System Model For Dynamically Reconfigurable Software,”
IBM Systems Journal, Special Issue on Autonomic Computing, March 2003



Runtime Executive (RTE):
ARMOR Approach

¢ Adaptive Reconfigurable Mobile Objects of Reliability:

A Multithreaded processes composed of replaceable building blocks called
elements

A Elements provide error detection and recovery services to user applications or
operating system.

¢ Hierarchy of ARMOR processes form runtime environment:

A ARMOR runtime environment is itself self checking

¢ ARMOR properties
A designed to be reconfigurable
A resilient to errors by leveraging multiple detection and recovery mechanisms

A internal self-checking mechanisms to prevent failures from occurring and to
limit error propagation.

A state protected through checkpointing.



Runtime Executive (RTE):
ARMOR Approach “Total Solution”
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Runtime Executive (RTE):
ARMOR Approach “Embedded Solution”

ARMOR Microkernel
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Modular design of processes lends itself well to small footprint solutions.
Special elements optimized for memory/performance requirements.
Specialized microkernel:

Remove support for inter-ARMOR communication through regular messaging
Static configuration of elements; no need to dynamically change elements



Support for Adaptation of Error Detection Across
System Hierarchy

¢ Hardware -

» acommon processor-
level framework
exploiting features
(e.g., debug and
performance registers)
of current processors

¢ Software

e > robust, self-checking
Kernel health monitoring, runtime executive for

fault management

Application transparent
checkpointing

Operating System Support



