Adaptive Application-Aware
Runtime Checking

Ravi lyer, Z. Kalbarczyk, N. Nakka, L. Wang, N. Breems et. al
Center for Reliable and High-Performance Computing
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
www.crhc.uiuc.edu/DEPEND

http://www.crhc.uiuc.edu/DEPEND/

The Embedded Environment: Cell Phones

Measure
&
Monitor

Control

IY YY)

el |
’ Application ||
Middleware L;

TN Operating system L

Modular design of processes lends itself well to small footprint solutions.

Specialized Applications optimized for memory/performance
requirements.

Specialized/Customized kernels

Crash Latency

Stack Injection (Linux on Pentium and PowerPC)

Percentage

90%-
80%-
70%-
60%-
50%-
40%-
30%-
20%-
10%

Latency in Stack

0%

3k

@ Pentium
m PPC

10k

100k 1M 10M 100M
CPU Cycles

1G >1G

Early detection of
kernel stack overflow
on PPC major
contributor to
reduced crash latency

What is Needed?

¢ A hardware/software framework that adapts dynamically
to application needs

¢ Extracting application properties that can be used as an
Indicator of correct behavior and to drive synthesis of
application-aware checks

¢ Instantiating the optimal hardware/software for runtime
application checking

¢ Embed the devised checks into the custom hardware or
software middleware or operating system

Adaptive Application Aware Checking in Hardware:
Basics

¢ Static source-code analysis and profiling provides

A Which checkers to be used and at what points of application
execution

A Checkers are adapted to application

¢ Hardware modeling using HDL

¢ Synthesize modules into reconfigurable hardware
framework

¢ Modules themselves are runtime reconfigurable

Adaptive Application Aware Checking in Hardware:
Reliability and Security Engine

RSE Framework

For Input Interface; — Inputinterface
i e
Queue Size = 16 S [y Fan]
: _ . X
32-bit regs = 80; T
Gate Count = 12800 iain Bl ro—
¥ Insrucion |4———
> Chede
| Module [E=====m
B> Memory |=
| 223 mut
> Adaptive <
1 Hertbeat
MDUDA0 . gMoninr =
.| Load/sore Integer Muliply / B ALLDZOL _ il
Unit Unit Divide Unit ResolveUngt - _ | J_ . JL1SUBRAd _
2 [B Dda <
L0 LoadFromALU(/) ot |
cecFomM : s
AT = :: e
_
Data - e Write - Reorder il M
Cache Buffer , A :Buffe MO0 |BUCLEIIIREES » C""'; Lof ‘—
$ 1 v .] Cuconmiie® f X, L
] : e s IrstToCammi(1 . - |
i Atbiter po | Pommint || | "Oueit [Ener
Feich/ Dspach Widh 4indrudions E ' ZDP | Quase || Disble |
Eewdh 4ingrudions Bus-Interifce | ! LSUDeO M
RW/1SQs= 16/Berties e | M EA
Terudionll axche Sze: 8KB, 1-wayasdaiie /s
Datall adhe Se: 8KB 1-weyasodaie LoacFomisu(_ 7} Memory |+—*——
Ferudion 2 ade Sz GAKB, 2-wayasodahe el Memay Access Reqsst Mem_ Ray L Acess |+
----------------------------------- - —
Dial2Gade See: 128KB 2-weyasoaaie — e Unit =

N. Nakka, J. Xu, Z. Kalbarczyk, R. K. lyer, “An Architectural Framework for Providing Reliability and Security Support”, DSN2004.

The Processor-Level Framework

¢ Implemented as an integral part of the processor on the same die

¢ Embeds hardware modules for reliability, security and recovery
that execute in parallel with the instruction execution in the main
pipeline

¢ Provides a generic interface to external processor system through
which modules access runtime information for checking

¢ Application interfaces to framework through CHECK instructions
A Extension of the ISA
A Used by the application to invoke specific modules

Detection of Instruction Dependency Violations

¢ RAW dependency imposes sequential order on execution of
Instructions

¢ Errors in processor control logic, binary of instruction can lead to a
violation

¢ Sequence Checker Module (SCM), detects such violations

A monitors issue and execute events in pipeline

¢ Representative instruction sequences extracted using static analysis

¢ CHECKSs used to dynamically reconfigure the module with
sequences

SCM Detection Mechanism

Fetch

!

Issue Queue

Decode &
Rename

v

Execute

Execute Q

uyeue

v

Memory

l

Commit

Sequence

State

WAIT_FOR

Execute
Error

Il
vY

Issue
Error

Counter

¢ SCM state for sequence — (i, e)

A | : Instruction on which event
IS awaited

A e event (issue/execute)

¢ Property - at any instance of time,
at most one instruction of a
dependent sequence can be issued
or executed

¢ Instructions in issue and execute
gueues matched against instructions
of sequence

¢ at most one instruction from the
queue should match the correct
state

¢ Error Detected when there is :
A more than one match

A a match other than expected
state

SCM Reconfiguration Architecture

¢Achieved with help of CHECK
Instructions

¢Extracted sequences loaded as part of Application Processor
program image
SCM
#At runtime SCM loads sequences into | |(Check) (Base-addn
set of registers T D Gier sOM state
S
. . (Check) (Offset) (Len) [~
#Each sequence has additional registers | \l\ “——>N\Base Address
™ “~Sequence Length
A length, state N :1
TS&———2| | Sequence
:): Checked

Process Crash/Hang Detection (1)

1l

Fetch Loop
Exit

/
I ¢ | [cur oscane —afPrev OSCane |

Set Timeout; Start Timer R 7
Ld
Decode ILHD /

Disable Timer > 7 Cur Process Crir 1 Prev Process Crir 1 [
! ly Cur Process Critr 2 Prev Process Crir 2

Cur Process Crir 3
Execute Instruction | Check or

j: "' Counter | Updates ~

\
Memor
y Log Address \\
I Check sequence repetition SCHD \ IC H
\

Update 1

Loop Entry

<
3
ICH Cur Process Crtr n

Commit \
Address

¢ Infinite Loop Hang Detection (ILHD) by tracking loop entry and exit points

¢ Sequential Code Hang Detection (SCHD) detects illegal repetition of sequence of
Instructions

¢ Instruction Count Heartbeat (ICH) leverages processor performance registers to
detect process/OS crashes/hangs

Process/Crash Hang Detection (2)

¢ Process hang in legal loops
A Infinite loop Hang Detector (ILHD)
A Profile-based analysis of application to estimate loop execution time
A Module reconfigured with timeout for loop as it is entered - CHECK Loop Entry
and Loop Exit
¢ Process hang in illegal loops
A Sequential code hang detector (SCHD)
A Parameterize module with length of loop
A Any loop shorter than given length indicates control error

Process Crash/Hang Detection

¢ Crash detection
A Instruction Count Heartbeat (ICH)
A Uses processor performance counters to detect process and OS crashes
A Can be extended to support failure detection in distributed systems

Performed by
ICH Module

Performed
by OS

Adaptive Application Aware Checking in Software:
Runtime Executive (RTE) — Middleware

¢ Reconfigurable statically and dynamically to provide range of
customizable error checks to operating system and applications, e.g.,

A Heartbeats - (i) adaptive - the timeout value adapts to changes in the network
traffic or node load and (ii) smart - the monitored entity excites a set of checks
before sending the heartbeat) .

A Data-Flow Signatures — a pattern of reads and writes to variables in a code
block (program object, thread, function, basic block or instruction)

¢ Self-checking (self-healing)

¢ Example - reconfigurable ARMOR architecture

A K. Whisnant, Z. Kalbarczyk, R. lyer, “A System Model For Dynamically Reconfigurable Software,”
IBM Systems Journal, Special Issue on Autonomic Computing, March 2003

Runtime Executive (RTE):
ARMOR Approach

¢ Adaptive Reconfigurable Mobile Objects of Reliability:

A Multithreaded processes composed of replaceable building blocks called
elements

A Elements provide error detection and recovery services to user applications or
operating system.

¢ Hierarchy of ARMOR processes form runtime environment:

A ARMOR runtime environment is itself self checking

¢ ARMOR properties
A designed to be reconfigurable
A resilient to errors by leveraging multiple detection and recovery mechanisms

A internal self-checking mechanisms to prevent failures from occurring and to
limit error propagation.

A state protected through checkpointing.

Runtime Executive (RTE):
ARMOR Approach “Total Solution”

f

Basic IEIL
Configuration =
)
Node Node
Manager A Heartbeat
ARMOR Pp- ARMOR
I I I
Daemon Daemon
ARMOR ARMOR
network
Daemon Daemon
ARMOR ARMOR
I I I
Manager Exec. | |
ARMOR [A pMOR ARMOR App.

Node

Node

multi-node

4 Applicatio

.
ot
“
.
“

A

.
s
.

solution
‘ I
ﬂ[] Backup
ARMOR

single-node
solution

A 4
S

Operating Syst

v
L: ARMOR

étp ’kﬂ

Hardware Platform ™.

v

*

s
.
.
s
“““
s
s
.
s

Primary
ARMOR

— App.

Node

Daemon > Execution

ARMOR
_ Interface
Heartbeat Application
ARMOR
Node 1

Scaling ARMOR
Runtime
Environment

Runtime Executive (RTE):
ARMOR Approach “Embedded Solution”

ARMOR Microkernel

e

—
-
-
—
—
—
-~
~ -

: ’

ARMOR P

Mlddleware . i .
el
Operatmg system . - =
el

Library of Elements

Modular design of processes lends itself well to small footprint solutions.
Special elements optimized for memory/performance requirements.
Specialized microkernel:

Remove support for inter-ARMOR communication through regular messaging
Static configuration of elements; no need to dynamically change elements

Support for Adaptation of Error Detection Across
System Hierarchy

¢ Hardware -

» acommon processor-
level framework
exploiting features
(e.g., debug and
performance registers)
of current processors

¢ Software

e > robust, self-checking
Kernel health monitoring, runtime executive for

fault management

Application transparent
checkpointing

Operating System Support

