Byzantine Filtering

- From WG10.4 in Siena (and our 2003 SAFECOMP and 2004 IEEE DASC papers)
 - Byzantine fault propagation "physics" and example
 - Combating Byzantine Generals' fault propagation
 - Masking (blocks Byzantine signals via dominant logic)
 - Two-of-Three voter example
 - Can be done only with completely independent sources (completely independent sources are very rare)
 - Filtering (converts a Byzantine signal to non-Byzantine)
 - Buried within all real Byzantine tolerance mechanisms
 - Needs to be tested to determine coverage
 - Byzantine filter testing idea
 - But, can this be done with a practicable number of tests?
 - How can proof-of-coverage testing be reduced?
 - An answer that reduces amplitude test range
- Braided Ring: A network to exploit Byzantine filtering

Digital Circuitry Behavior

There is no such thing as digital circuitry, ... there is just analog circuitry driven to extremes.

This allows the possibility of a digital logic signal being "1/2".

Logic Gate Transfer Function with "1/2" Noise

Byzantine Filtering

- Bit-level (waveform) filtering
 - Implemented with any combination of:
 - Schmitt triggers
 - Synchronizers
 (same as used to mitigate metastability)
 - Glitch filters
 - . . . (almost any technique to reduce noise)
 - Perfect coverage impossible
 - Need to determine coverage of implementation
 - Typical pessimistic system Byzantine failure probability is 10⁻⁵ (10 nodes, 10 critical components in each node with 10⁻⁷ probability of failure)
 - ◆ Typical system requires < 10⁻¹⁰ probability of failure
 - Typical coverage needs to be 0.99999

"Byzantine" Fault Injection

Concept:

Create a suitably representative set of faulty waveforms

Acronyms:

PRNG = Pseudo Random Number Generator

D / A = Digital to Analog Converter

PUT = Port Under Test

Bit Cell Decision Threshold

Remove Test Sample Points Past Hold Time

Test Amplitude Reduction with Known Threshold

"1/2" DUT Output Signal Rejection

How to Find a Device's Input Threshold

- Connect a device's output back to its input such that the loop has an odd number if inversions in it.
 - This creates an oscillator.
- Add an integrator with a very large time constant.
 - This filters out the oscillations.
- Integrator's output settles on a value which is the input's threshold voltage.

Completion of the Tester

- Add the pseudo-exhaustive bit pattern trajectories to the input feedback (with a reduced number of amplitude test points).
- Either latch the integrator's output before applying the test patterns or make sure the test pattern's are "DC balanced" over the time constant of the integrator.

The Path of Low-Cost Dependable Systems

Redundant Bus

- Not sufficient due to spatial proximity faults (unavoidable via routing)
- Serious issues with babbling and masquerade failures
 - Local Guardians not truly independent

Redundant Star

- Independent guardians (G)
- Reshaping in Guardians performs Byzantine filtering
- Dual architecture does not allow arbitrarily faulty components
- What dependability level can be reached?
 - Weakest link principle says 10-6
- 10⁻⁶ is not good enough
 - Try argue bizarre fault mode has lower probability
 - Or use triplex (not low cost)

The Path of Low-Cost Dependable Systems

Redundant Bus

- Not sufficient due to spatial proximity faults (unavoidable via routing)
- Serious issues with babbling and masquerade failures
 - Local Guardians not truly independent

Redundant Star

- Independent guardians (G)
- Reshaping in Guardians performs Byzantine filtering
- Dual architecture does not allow arbitrarily faulty components
- What dependability level can be reached?
 - Weakest link principle says 10-6
- 10⁻⁶ is not good enough
 - Try argue bizarre fault mode has lower probability
 - Or use triplex (not low cost)

Braided Ring

Begins with traditional braided ring

 Each node has links to two nearest neighbors and links to two next nearest neighbors

- Each link is 2x unidirectional
- Four link paths from each source to each destination (used for availability only)
- Adds these new ideas
 - Eliminate half of transmitters and ~1/4 of wire length
 - Uses Byzantine filtering during bit regeneration in each node
 - Does a bit-for-bit compare of each node's output vs input
 - Miscompares set a failed flag in the tail of bad messages
 - Nearly 100% coverage of regeneration errors

— ...

Availability versus Integrity

- The Availability "OR"
 - If miscompare, arbitrarily select one
 - Goal is readiness for correct service

- The Integrity "AND"
 - If miscompare, reject both
 - Goal is absence of improper alterations

Simple 2x replication gives you availability or integrity but not both!

Checking for Node Failures

 Errors of components are detected by doing a bitfor-bit compare of node's input versus output

Checking for Node Failures

- Errors of components are detected by doing a bitfor-bit compare of node's input versus output
- Comparison of protocol behavior (timing)

Braided Ring is a Full Coverage Architecture

Full coverage data propagation

- "true" 10⁻⁹

 Neighboring nodes perform guardian function

 No need for separate silicon for guardian

Saves silicon and thus cost

One of Many Ways to Cable the Braided Ring

- "Skip" links to next nearest neighbors can be routed via nearest neighboring nodes
- Useful when bundling cable costs are a significant part of wiring costs

Detection Containment Bypasses

 Need to detect internal and external bypasses of devices entrusted to do fault (error) containment.

Detection Containment Bypasses

 Need to detect internal and external bypasses of devices entrusted to do fault (error) containment.

Solution: "Encrypt" each link differently

Ring Example Using the Minimum 6 Keys

legend: different color represents different encoding

Benefits of a Braided Ring

- Compared to a bus topology system
 - Survives a proximately fault
 - Babble and masquerade faults stopped by neighbors
 - No problem with untrustable local guardians
 - No need to add another integrated circuit for guardianship
 - No electrical fault isolation needed for network interface
- Compared to a star topology system
 - No need for additional (triplex) central components
 - Less cost
 - Less unreliability
 - Less costly wiring
 - Cable has to go only to nearest neighbor, not all the way to a central star
- Optimally cheap Byzantine solution?