
Carnegie Mellon

MEAD
Middleware for Embedded

Adaptive Dependability

Priya Narasimhan
Carnegie Mellon University

Pittsburgh, PA
priya@cs.cmu.edu

2

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

My Background
Prior research on dependable enterprise systems

Developed systems that provide “out-of-the-box” reliability to
CORBA/Java applications

No need to change application or ORB code
Eternal: Fault-tolerant CORBA/Java support
Immune: Secure CORBA/Java support

Helped to establish Fault-Tolerant CORBA standard and founded
company to sell fault-tolerant products based on my PhD research
Lessons learned [IEEE TOCS 2004]

It’s hard for users to (re)configure the fault-tolerance of their systems
to suit the applications’ needs
There needs to be a way of mapping high-level user requirements to
low-level implementation mechanisms

3

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Motivation for MEAD
Middleware is increasingly used for applications, where dependability and quality
of service are important

Fault-Tolerant CORBA and Fault-Tolerant Java standards

But ……
These standards provide a laundry list of “fault-tolerance properties”
No insight into how these properties ought to be set
No insight into how fault-tolerance and fault-recovery can be configured to meet an
application’s performance or reliability requirements

One focus of MEAD
Providing advice on configuring fault-tolerance for distributed applications
Being able to determine this configuration at deployment-time
Being able to re-determine and enforce configurations at runtime
Being able to perform (re)configuration proactively, where possible
Middleware merely a vehicle for exploring proactively configurable fault-tolerance

4

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Research Focus
Overall objectives of the MEAD system

Automated, adaptive (re)configuration of fault-tolerance [WADS 2004]
Proactive fault-recovery for distributed applications [DSN 2004]

Exploiting system information for faster recovery

Static analysis of application and middleware code to extract application-level
insights and communicate them to the MEAD runtime [SRDS 2004]
Zero-downtime, live upgrades of the application

Dependency tracking at runtime and development-time
Staggered quiescence of different parts of the system

Target applications
Embedded printing applications (HP Labs)
Unmanned aerial vehicles (BBN & Boeing)
Shipboard computing platforms (Raytheon & Lockheed Martin)
Automotive telematics systems (General Motors)

5

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

And Now For Something Completely Different ….

Why MEAD?
Legendary ambrosia of the
Vikings
Believed to endow its imbibers
with

Immortality (dependability)
Reproductive capabilities
(replication)
Wisdom for weaving poetry
(cross-cutting aspects of
performance and fault
tolerance)

6

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

7

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Versatile Dependability

Existing Dependable Systems

Fault-Tolerance

Performance

Re
so

ur
ce

s

Versatile Dependability

Strength of fault-model
Group communication style
FT granularity
No. of faults tolerated
Frequency of failures
Window of vulnerability
Overhead of FT

CPU usage
Bandwidth
Energy / Power
Memory usage
Number of nodes
Storage space

Fault detection latency
Replica launch latency
Fault-recovery latency
No. of missed deadlines

8

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

External Properties
Scalability
Availability
Real-Time

Guarantees

Application
Frequency of requests
Size of requests/responses
Size of State
Application Resources

Fault-tolerance infrastructure (MEAD)
Replication (Active, Passive)
Number of Replicas
Checkpointing Frequency

“Knobs” of the MEAD System

High Level Knobs

Low Level Knobs

9

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Fault-Tolerance Advisor

Configuring fault tolerance today is mostly ad-hoc
To eliminate the guesswork, we deployment/run-time advice on

Number of replicas
Checkpointing frequency
Fault-detection frequency, etc.

Input to the Fault-Tolerance Advisor
Application characteristics (through program analysis)
System reliability characteristics
System’s and application’s resource usage

Fault-Tolerance Advisor works with other MEAD components to
Enforce the reliability advice
Sustain the reliability of the system, in the presence of faults

10

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Fault-Tolerance Advisor

Run-time
profile of
resource

usage

Middleware
Application

Operating system,
Network speed/type,
Configuration,
Workstation speed/type

Recovery time
Faults to tolerate

Offline program
analyzer

Number of replicas
Replication style
Checkpointing rate
Fault detection rate
Locations of replicas

Fault
Tolerance
Advisor

11

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Run-Time Adaptation

12

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Mode-Driven Fault-Tolerance Adaptation
Most applications have multiple modes of operation

Example: the unmanned aerial vehicle (UAV) application exhibits
Surveillance mode
Target recognition mode

Each mode might require different fault-tolerance mechanisms
The critical elements in the path might differ
The resource usage might differ, e.g., more bandwidth used in some modes
The notion of distributed system “state” might be different

MEAD aims to provide the “right mode-specific fault-tolerance”
Based on the Fault-Tolerance Advisor’s inputs
In response to (omens heralding) mode changes

13

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Proactive Fault-Tolerance
Involves predicting, with some confidence, when a failure might
occur, and compensating for the failure even before it occurs

For instance, if we knew that a processor had an 80% chance of failing
within the next 5 minutes, we could perform process-migration

Our goal in MEAD is to
Lower the impact faults have on real time schedules
Implement proactive dependability in a transparent manner

Proactive dependability has two aspects:
Fault prediction: Reducing the unpredictable nature of faults
Proactive recovery: Reducing fail-over times and number of failures
experienced at the application-level (primary focus in MEAD)

Complements, but does not replace, the classical reactive fault-
tolerance schemes since we cannot predict every fault

14

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Benefits

Provides a framework for proactive recovery that is transparent to
the client application
Proactive recovery can

Significantly reduce failover times, lowering the impact of a failure on
real-time schedules
Reduce the number of failures experienced at the application level
Exploit knowledge of system topology to provide advance warning of
failures to other servers “further down the line” (multi-tiered applications)
Request the recovery manager to launch new replicas so that a consistent
number of replicas are retained in the group (useful for active replication
where a certain number of servers are required to reach agreement)

Caveat
Not applicable to every kind of fault, of course

15

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Ongoing: Topology-Awareness
Curbing the spread of propagating faults or invoking faster recovery based on

System topology,
Application’s interconnections,
Application’s normal fault-free behavior

Could also help sequence recovery actions across nodes

·motivation ·architecture · evaluation ·future directions

16

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Ongoing: Live Software Upgrades
Live software upgrades

Software upgrades currently involve downtime (“scheduled maintenance”)
Also, can cause a cascade of upgrades rippling through the system

Development-time preparation for live upgrades
Exploiting program analysis
Identify the state before and after the upgrade, and the transition path
Prepare the application for upgrades
Identify potential points for scheduling upgrades
Building component-based applications to be born upgradeable

Runtime handling of live upgrades
Determining quiescence
Run-time dependency tracking in a distributed system
Staggering out upgrades without incurring downtime

17

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Looking Ahead …….

OMG (CORBA standards body) in the process of drafting an RFP
for RT-FT middleware
Consider performance, configurability and fault-tolerance

To avoid point solutions that might work well, but only for
well-understood applications, and only under certain constraints
To allow for systems that are subject to dynamic conditions, e.g.,
changing constraints, new environments, overloads, faults, ……

Expose interfaces that support the
Capture of the application’s fault-tolerance and timing needs
Tuning of the application’s fault-tolerance configurations
Query of the provided “level” of fault-tolerance and quality-of-service
Scheduling of fault-tolerance activities (fault-recovery)

18

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Current Release of MEAD

Features
Active replication, warm passive replication, resource monitoring
Focus on CORBA applications (upcoming – CCM and EJB)
Tunable parameters: number of replicas, replication style, checkpointing
frequency

Obtaining MEAD
/groups/pces/uav_oep/mead_cmu/release/ on
users.emulab.net

MEAD User Support
Manual: http://www.ece.cmu.edu/~mead/release/index.html
Problem-reporting

http://www.ece.cmu.edu/~mead/release/mead-support-request.html
You can also email us at mead-support@lists.andrew.cmu.edu

19

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Teaching Students These Skills
Mixed class of students – software engineering, electrical engineering,
computer science
Semester-long project – pick a middleware platform (CORBA, J2EE, .NET, …..)
Baseline

Distributed application with reliability, scalability and timing requirements

Fault-tolerant baseline
Evaluate the fault-tolerance (as compared with the non-fault-tolerant version)

“Real-time” fault-tolerant baseline
Make the fault-tolerant baseline application exhibit timing/latency guarantees

Scalable real-time fault-tolerant final system
Make your fault-tolerant real-time baseline application maintain performance,
even with 1000 threads, 100 processes, etc.

Understand the fault-tolerance vs. real-time vs. performance trade-offs
http://www.ece.cmu.edu/~ece749

20

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

Summary

MEAD’s configurable fault-tolerance
Born out of lessons learned in deploying previous fault-tolerant systems

Advisor to take the guesswork out of configuring fault-tolerance
“Knobs” for the appropriate expression of a user’s requirements
Offline program analysis to extract application-level knowledge
Proactive fault-recovery mechanisms

21

Carnegie Mellon

MEAD: Middleware for Embedded Adaptive Dependability

For More Information

http://www.ece.cmu.edu/~mead

Tudor Dumitras, Aaron Paulos, Soila Pertet, Charlie Reverte,
Joe Slember, Deepti Srivastava

