Carnegie Mellon

MEAD
Middleware for Embedded
Adaptive Dependability

Priya Narasimhan

Carnegie Mellon University
Pittsburgh, PA

priya@cs.cmu.edu

Electrical & Computer

) ENGINEERING
-]

My Background

m Prior research on dependable enterprise systems

N Developed systems that provide “out-of-the-box™ reliability to

CORBA/Java applications
N No need to change application or ORB code

N Eternal: Fault-tolerant CORBA/Java support
~ Immune: Secure CORBA/Java support

m Helped to establish Fault-Tolerant CORBA standard and founded
company to sell fault-tolerant products based on my PhD research

m Lessons learned [IEEE TOCS 2004]

~ It’s hard for users to (re)configure the fault-tolerance of their systems
to suit the applications’ needs

N There needs to be a way of mapping high-level user requirements to
low-level implementation mechanisms

2

MEAD: Middleware for Embedded Adaptive Dependability

Carnegie Mellon

Motivation for MEAD

m Middleware is increasingly used for applications, where dependability and quality
of service are important

N Fault-Tolerant CORBA and Fault-Tolerant Java standards

N These standards provide a laundry list of “fault-tolerance properties”
N No insight into how these properties ought to be set

N No insight into how fault-tolerance and fault-recovery can be configured to meet an
application’s performance or reliability requirements

m One focus of MEAD
N Providing advice on configuring fault-tolerance for distributed applications
N Being able to determine this configuration at deployment-time
N Being able to re-determine and enforce configurations at runtime
N Being able to perform (re)configuration proactively, where possible
N Middleware merely a vehicle for exploring proactively configurable fault-tolerance

3
MEAD: Middleware for Embedded Adaptive Dependability

Research Focus

m Overall objectives of the MEAD system
N Automated, adaptive (re)configuration of fault-tolerance [WADS 2004]

N Proactive fault-recovery for distributed applications [DSN 2004]
N Exploiting system information for faster recovery

N Static analysis of application and middleware code to extract application-level
Insights and communicate them to the MEAD runtime [SRDS 2004]

N Zero-downtime, live upgrades of the application
~ Dependency tracking at runtime and development-time
N Staggered quiescence of different parts of the system
m Target applications
N Embedded printing applications (HP Labs)
N Unmanned aerial vehicles (BBN & Boeing)
N Shipboard computing platforms (Raytheon & Lockheed Martin)
N Automotive telematics systems (General Motors)

4

MEAD: Middleware for Embedded Adaptive Dependability

And Now For Something Completely Different

m Why MEAD?

m Legendary ambrosia of the
Vikings

m Believed to endow its imbibers
with
~ Immortality (= dependability)
N Reproductive capabilities
(=replication)
~ Wisdom for weaving poetry
(=>cross-cutting aspects of

performance and fault
tolerance)

5
MEAD: Middleware for Embedded Adaptive Dependability

Carnegie Mellon

6
MEAD: Middleware for Embedded Adaptive Dependability

Versatile Dependability

mCPU usage \
mBandwidth

mEnergy / Power
mMemory usage
mNumber of nodes

_mStorage space /

Resources'

Versatile Dependability

Existing Dependable 'Systrems.i .

mFault detection latency
mReplica launch latency
mFault-recovery latency
mNo. of missed deadlines

ﬁStrength of fault-model \ o

mGroup communication style

mFT granularity

mNo. of faults tolerated

mFrequency of failures

m\Window of vulnerability
wverhead of FT

Performance

Fault-Tolerance

7
MEAD: Middleware for Embedded Adaptive Dependability

“Knobs” of the MEAD System

High Level Knobs

mApplication mExternal Properties
“Frequency of requests NScalability
NSize of requests/responses “Availability
NSize of State “Real-Time
~Application Resources Guarantees

Low Level Knobs

\

mFault-tolerance infrastructure (MEAD)
“Replication (Active, Passive)
~“Number of Replicas
NCheckpointing Frequency

MEAD: Middleware for Embedded Adaptive Dependability

Fault-Tolerance Advisor

m Configuring fault tolerance today is mostly ad-hoc

m To eliminate the guesswork, we deployment/run-time advice on
~ Number of replicas
N Checkpointing frequency
N Fault-detection frequency, etc.

m [nput to the Fault-Tolerance Advisor
N Application characteristics (through program analysis)
N System reliability characteristics
N System’s and application’s resource usage

m Fault-Tolerance Advisor works with other MEAD components to
N Enforce the reliability advice
N Sustain the reliability of the system, in the presence of faults

9
MEAD: Middleware for Embedded Adaptive Dependability

Carnegie Mellon

Fault-Tolerance Advisor

Recovery time

Faults to tolerate
Offline program Gi\‘;
analyzer

Middleware
Application m

Tolerance
Advisor

Number of replicas
|:'> Replication style
! Checkpointing rate
Fault detection rate
Locations of replicas

resource
usage

Operating system,
Network speed/type,
Configuration,
Workstation speed/type

MEAD: Middleware for Embedded Adaptive Dependability

Run-Time Adaptation

11
MEAD: Middleware for Embedded Adaptive Dependability

Mode-Driven Fault-Tolerance Adaptation

m Most applications have multiple modes of operation

N Example: the unmanned aerial vehicle (UAV) application exhibits
N Surveillance mode
N Target recognition mode

m Each mode might require different fault-tolerance mechanisms
N The critical elements in the path might differ
N The resource usage might differ, e.g., more bandwidth used in some modes
N The notion of distributed system “state” might be different

m MEAD aims to provide the “right mode-specific fault-tolerance”
N Based on the Fault-Tolerance Advisor’s inputs
~ In response to (omens heralding) mode changes

12
MEAD: Middleware for Embedded Adaptive Dependability

Proactive Fault-Tolerance

m Involves predicting, with some confidence, when a failure might
occur, and compensating for the failure even before it occurs

N For instance, if we knew that a processor had an 80% chance of failing
within the next 5 minutes, we could perform process-migration

m Ourgoal in MEAD is to
N Lower the impact faults have on real time schedules
~ Implement proactive dependability in a transparent manner

m Proactive dependability has two aspects:
~ Fault prediction: Reducing the unpredictable nature of faults

N Proactive recovery: Reducing fail-over times and number of failures
experienced at the application-level (primary focus in MEAD)

m Complements, but does not replace, the classical reactive fault-
tolerance schemes since we cannot predict every fault

MEAD: Middleware for Embedded Adaptive Dependability

Benefits

m Provides a framework for proactive recovery that is transparent to
the client application

m Proactive recovery can

~ Significantly reduce failover times, lowering the impact of a failure on
real-time schedules

N Reduce the number of failures experienced at the application level

~ Exploit knowledge of system topology to provide advance warning of
failures to other servers “further down the line” (multi-tiered applications)

N Request the recovery manager to launch new replicas so that a consistent
number of replicas are retained in the group (useful for active replication
where a certain number of servers are required to reach agreement)

m Caveat
~ Not applicable to every kind of fault, of course

14
MEAD: Middleware for Embedded Adaptive Dependability

Ongoing: Topology-Awareness

m Curbing the spread of propagating faults or invoking faster recovery based on
N System topology,
N Application’s interconnections,
N Application’s normal fault-free behavior

m Could also help sequence recovery actions across nodes

.architecture 15

MEAD: Middleware for Embedded Adaptive Dependability

Ongoing: Live Software Upgrades

m Live software upgrades
N Software upgrades currently involve downtime (*scheduled maintenance”)
N Also, can cause a cascade of upgrades rippling through the system

m Development-time preparation for live upgrades
N Exploiting program analysis
~ Identify the state before and after the upgrade, and the transition path
N Prepare the application for upgrades
~ ldentify potential points for scheduling upgrades
N Building component-based applications to be born upgradeable

m Runtime handling of live upgrades
N Determining quiescence
N Run-time dependency tracking in a distributed system
N Staggering out upgrades without incurring downtime

16
MEAD: Middleware for Embedded Adaptive Dependability

Looking Ahead

m OMG (CORBA standards body) in the process of drafting an RFP
for RT-FT middleware

m Consider performance, configurability and fault-tolerance

~ To avoid point solutions that might work well, but only for
well-understood applications, and only under certain constraints

N To allow for systems that are subject to dynamic conditions, e.g.,
changing constraints, new environments, overloads, faults,

m Expose interfaces that support the
N Capture of the application’s fault-tolerance and timing needs
N Tuning of the application’s fault-tolerance configurations
N Query of the provided “level” of fault-tolerance and quality-of-service
N Scheduling of fault-tolerance activities (fault-recovery)

17
MEAD: Middleware for Embedded Adaptive Dependability

Current Release of MEAD

m Features
N Active replication, warm passive replication, resource monitoring
~ Focus on CORBA applications (upcoming — CCM and EJB)

N Tunable parameters: number of replicas, replication style, checkpointing
frequency

m Obtaining MEAD

N /groups/pces/uav_oep/mead cmu/release/ on
users.emulab.net

m MEAD User Support
X Manual: http://www.ece.cmu.edu/~mead/release/index.html

N Problem-reporting
N http://www.ece.cmu.edu/~mead/release/mead-support-request.html

< You can also email us at mead-support@]lists.andrew.cmu.edu

18
MEAD: Middleware for Embedded Adaptive Dependability

Teaching Students These Skills

m Mixed class of students — software engineering, electrical engineering,
computer science

m Semester-long project — pick a middleware platform (CORBA, J2EE, .NET,)

m Baseline
N Distributed application with reliability, scalability and timing requirements

m Fault-tolerant baseline
N Evaluate the fault-tolerance (as compared with the non-fault-tolerant version)

m “Real-time” fault-tolerant baseline
N Make the fault-tolerant baseline application exhibit timing/latency guarantees

m Scalable real-time fault-tolerant final system

N Make your fault-tolerant real-time baseline application maintain performance,
even with 1000 threads, 100 processes, etc.

m Understand the fault-tolerance vs. real-time vs. performance trade-offs
m http://www.ece.cmu.edu/~ece749

19
MEAD: Middleware for Embedded Adaptive Dependability

Summary

m MEAD'’s configurable fault-tolerance
~ Born out of lessons learned in deploying previous fault-tolerant systems

m Advisor to take the guesswork out of configuring fault-tolerance
m “Knobs” for the appropriate expression of a user’s requirements
m Offline program analysis to extract application-level knowledge
O

Proactive fault-recovery mechanisms

20
MEAD: Middleware for Embedded Adaptive Dependability

Carnegie Mellon

For More Information Q© ENGm&E%G

http://www.ece.cmu.edu/~mead

Tudor Dumitras, Aaron Paulos, Soila Pertet, Charlie Reverte,

Joe Slember, Deepti Srivastava 21

MEAD: Middleware for Embedded Adaptive Dependability

