IFIP WG 10.4 Winter Meeting, Rincon PR 30 Jan 2005

Automated Test Generation
with sal-atg

John Rushby
with Grégoire Hamon and Leonardo de Moura

Computer Science Laboratory
SRI International
Menlo Park CA USA

John Rushby, SRI sal-atg: 1

Full Formal Verification is a Hard Sell: The Wall

' Reward (assurance)

Buinoid we Joay)
aAI0R BIUI

John Rushby, SRI sal-atg: 2

Newer Technologies Improve the Value Proposition

' Reward (assurance)

Buinoid we oyl
aAIoR BIUI

But only by a little

John Rushby, SRI sal-atg: 3

The Unserved Area Is An Interesting Opportunity

' Reward (assurance)

invisible

Buinoad we iosyl
9AI10R BIUI

formal methods

-
!

Effort

Conjecture: reward/effort climbs steeply in the invisible region

John Rushby, SRI sal-atg: 4

Invisible Formal Methods

Use the technology of formal methods

o Theorem proving, constraint satisfaction, model checking,
abstraction, symbolic evaluation

To augment traditional methods and tools
o Compilers, debuggers

To automate traditional processes
o Testing, reviews, debugging

Or to create new capabilities

o Strong static analyzers, autocode by constraint solving

To do this, we must unobtrusively (i.e., invisibly) extract

o A formal specification
o A collection of properties

And deliver a useful result in a familiar form

John Rushby, SRI sal-atg: 5

Invisible FM Example: Generating Unit Tests
Necessity and costs of testing well understood

Automation could be a huge win

In model based development (MBD), we have an executable
model of the system (e.g., in Simulink/Stateflow)

Generate tests by structural coverage in the model
Model also provides the oracle

It is well known that model checkers can be used as test
generators

John Rushby, SRI sal-atg: 6

Example: Stopwatch in Stateflow

Inputs: START and LAP buttons, and clock TIC event

(Stop A [Run TIC{
cent=cent+1;
(Reset LAP{ (Runni ng :

cent=0; sec=0; min=0; during: [cent==100] {
; i - . cent==
d!sp_ce_nt:O., disp_sec=0; disp_cent=cent; cent=0:
disp_min=0; disp_sec=sec; sec=Sec,:+1'
} (disp_min=min; } |

LAPT LAPJ] LAPT
[sec==60] {

N sec=0;
J< {Lap } min=min+1:
}
J

N

-

Example test goals: generate input sequences to exercise
LLap_stop to Lap transition, or to reach junction at bottom right

John Rushby, SRI sal-atg: 7

Generating Tests Using a Model Checker

Add trap variables go TRUE when a test goal is satisfied

o E.g., jabr that goes TRUE when junction at bottom right
IS reached

o Trap variables can be inserted automatically during
translation from the MBD language to the model checker
(Our translator from Stateflow to SAL does this)

Model check for *“always not jabr”
Counterexample will be desired test case
Trap variables add negligible overhead ('cos no interactions)

For finite cases (e.g., numerical variables range over bounded
integers) any standard model checker will do
o Although many pragmatic issues concerning symbolic vs.
bounded vs. explicit vs. .. for this application
o Otherwise need infinite bounded model checker as in SAL

John Rushby, SRI sal-atg: 8

Tests Generated Using a Model Checker

John Rushby, SRI sal-atg: 9

Problems Using OTS Model Checker as Test Generator

e Each test goal is treated separately: model checker is called
repeatedly and performs much redundant work

e [est set has many short tests
o Each incurs a startup cost during execution
o Total length is large, so high execution cost
o Much redundancy among the tests (wasteful)
o Few long tests (so deep bugs undetected)

e Model checker may be unable to reach deep test goals

John Rushby, SRI sal-atg: 10

A Better Way

Instead of starting each test from the the start state, we try
to extend the test found so far

Extending tests allows a bounded model checker to reach
deep states at low cost

o 5 searches to depth 4 much easier than 1 to depth 20
Could get stuck if we tackle the goals in a bad order
So, simply try to reach any outstanding goal and let the

model checker find a good order

o Can slice the model after each goal is discharged

o A virtuous circle: the model will get smaller as the
remaining goals get harder

Go back to the start (or another earlier state) when unable
to extend current test

John Rushby, SRI sal-atg: 11

An Efficient Test Set

Less redundancy, and longer tests tend to find more bugs

John Rushby, SRI sal-atg: 12

The SAL Automated Test Generator: sal-atg

e SAL is scriptable in Scheme

e sal-atg implements the method described in a few hundred
lines of Scheme

o (Re)starts use either symbolic or bounded model checking

* Parameterized choice and search depth
Extensions use bounded model checking

* Parameterized incremental search depth

Optional slicing after each extension or each restart
Customizable output to drive test harness

John Rushby, SRI sal-atg: 13

Example

® sal-atg stopwatch clock stopwatch_goals.scm -ed 5 —--incremental
In 5 seconds, generates single test case of length 17 that
covers the states and transitions of the Statechart

sal-atg stopwatch clock stopwatch_goals.scm -ed 5 -id 0 --incremental

--smcinit

Takes 106 seconds to cover flowchart as well: adds test of
length 101 for middle junction and one of length 6,001 for
jabr

John Rushby, SRI sal-atg: 14

John

Experimental Results

Rockwell Collins has developed a series of flight guidance
system (FGS) examples for NASA

SAL translation of largest of these kindly provided by UMN

Model has 490 variables (576 state bits), 196 reachable
control states, and 313 transitions

o Takes 61 seconds to generate single test case of length
45 that covers all states

o Takes 98 seconds to generate a single test of length 55
that covers all transitions

Without extensions, get 73 tests to cover transitions: 1 of
length 3, 9 of length 2, and the rest of length 1

o Poor mutant detection

We are in the process of testing our tests

Rushby, SR sal-atg: 15

Test Engineering with Automation

Generating tests just to achieve structural coverage is a poor
strategy

Traditional test engineers develop tests to explore interesting
cases, requirements, fault hypotheses

We need to give them a way to do this using automation
Specify the desired tests rather than constructing them

Develop an observer module that sets a variable TRUE when
a test has achieved some purpose

Tell sal-atg to search for conjunction of each trap variable
with the purpose

In general, sal-atg can search for arbitrary conjunctions

o E.g., product of structural coverage on control states and
boundary coverage on some data structure

John Rushby, SRI sal-atg: 16

Example Shift Scheduler

first_gear
entry: to_gear = 1;

[V <= shift_speed_21]

/transitionlz

shifting_a
entry: to_gear=2;

[gear == 1]
second_gear
entry: to_gear=2;

[V <= shift_speed_21]

/transilion21

shift_pending_b

entry: ctr=0;
to_gear=2;

during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby, SRI

[V > shift_:

DELAY]

DELAY]

[V > shift_speed_:

speed_12]

[V > shift_speed_23

[V <= shift_speed_23]

/transitionzs

shift_pending2

entry: ctr=0;
to_gear=2;

during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

[gear ==3

third_gear
> entry: to_gear=3;

[V <= shift_speed_43]

[V <= shift_speed_32]

/transition32

shift_pending_c

entry: ctr=0;
to_gear=3;

during: ctr=ctr+1,;

shifting_c
entry: to_gear=2;

/lransition34

shift_pending3

entry: ctr=0;
to_gear=3;

during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

[V <= shift_speed_43]

DELAY]

[V > shift_speed_23]

/transition43

shift_pending_d

entry: ctr=0;
to_gear =4;

during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

V > shift_speed_34]

DELAY]

[gear == 4]

[V > shift_speed_34]

DELAY]

[gear == 3]

sal-atg: 17

Shift Scheduler

One input is the gear currently selected by the gearbox

Tests often change this discontinuously (e.qg., 1, 3, 4, 2)

Can easily establish the test purpose to change only in single
steps, and to change at every step

John Rushby, SRI sal-atg: 18

Please Try It Out
e Main FM tools home page: http://fm.csl.sri.com

e SAL home page: http://sal.csl.sri.com

e SAL-atg (next week): http://sal.csl.sri.com/pre-release

John Rushby, SRI sal-atg: 19

