
IFIP WG 10.4 Winter Meeting, Rincon PR 30 Jan 2005

Automated Test Generation

with sal-atg

John Rushby

with Grégoire Hamon and Leonardo de Moura

Computer Science Laboratory

SRI International

Menlo Park CA USA

John Rushby, SR I sal-atg: 1

Full Formal Verification is a Hard Sell: The Wall

theorem
 proving

interactive
Reward (assurance)

Effort

PVS

John Rushby, SR I sal-atg: 2

Newer Technologies Improve the Value Proposition

theorem
 proving

interactive

m
odel

checking

Reward (assurance)

Effort

PVSICSSAL

automated

theorem proving

and abstraction

But only by a little

John Rushby, SR I sal-atg: 3

The Unserved Area Is An Interesting Opportunity

theorem
 proving

interactive

m
odel

checking

Reward (assurance)

Effort

PVSICSSAL

automated

theorem proving

and abstraction

invisible

formal methods

Conjecture: reward/effort climbs steeply in the invisible region

John Rushby, SR I sal-atg: 4

Invisible Formal Methods

• Use the technology of formal methods

◦ Theorem proving, constraint satisfaction, model checking,

abstraction, symbolic evaluation

• To augment traditional methods and tools

◦ Compilers, debuggers

• To automate traditional processes

◦ Testing, reviews, debugging

• Or to create new capabilities

◦ Strong static analyzers, autocode by constraint solving

• To do this, we must unobtrusively (i.e., invisibly) extract

◦ A formal specification

◦ A collection of properties

• And deliver a useful result in a familiar form

John Rushby, SR I sal-atg: 5

Invisible FM Example: Generating Unit Tests

• Necessity and costs of testing well understood

• Automation could be a huge win

• In model based development (MBD), we have an executable

model of the system (e.g., in Simulink/Stateflow)

• Generate tests by structural coverage in the model

• Model also provides the oracle

• It is well known that model checkers can be used as test

generators

John Rushby, SR I sal-atg: 6

Example: Stopwatch in Stateflow

Inputs: START and LAP buttons, and clock TIC event

[sec==60] {
 sec=0;
 min=min+1;
}

[cent==100] {
 cent=0;
 sec=sec+1;
}

TIC {
 cent=cent+1;
}LAP {

 cent=0; sec=0; min=0;
 disp_cent=0; disp_sec=0;
 disp_min=0;
}

Run

Running

Lap

during:
disp_cent=cent;
disp_sec=sec;
disp_min=min;

LAPLAP

Stop

Reset

Lap_stop

LAP

START

START

START

START

Example test goals: generate input sequences to exercise

Lap stop to Lap transition, or to reach junction at bottom right

John Rushby, SR I sal-atg: 7

Generating Tests Using a Model Checker

• Add trap variables go TRUE when a test goal is satisfied

◦ E.g., jabr that goes TRUE when junction at bottom right

is reached

◦ Trap variables can be inserted automatically during

translation from the MBD language to the model checker

(Our translator from Stateflow to SAL does this)

• Model check for “always not jabr”

• Counterexample will be desired test case

• Trap variables add negligible overhead (’cos no interactions)

• For finite cases (e.g., numerical variables range over bounded

integers) any standard model checker will do

◦ Although many pragmatic issues concerning symbolic vs.

bounded vs. explicit vs. . . for this application

◦ Otherwise need infinite bounded model checker as in SAL

John Rushby, SR I sal-atg: 8

Tests Generated Using a Model Checker

John Rushby, SR I sal-atg: 9

Problems Using OTS Model Checker as Test Generator

• Each test goal is treated separately: model checker is called

repeatedly and performs much redundant work

• Test set has many short tests

◦ Each incurs a startup cost during execution

◦ Total length is large, so high execution cost

◦ Much redundancy among the tests (wasteful)

◦ Few long tests (so deep bugs undetected)

• Model checker may be unable to reach deep test goals

John Rushby, SR I sal-atg: 10

A Better Way

• Instead of starting each test from the the start state, we try

to extend the test found so far

• Extending tests allows a bounded model checker to reach

deep states at low cost

◦ 5 searches to depth 4 much easier than 1 to depth 20

• Could get stuck if we tackle the goals in a bad order

• So, simply try to reach any outstanding goal and let the

model checker find a good order

◦ Can slice the model after each goal is discharged

◦ A virtuous circle: the model will get smaller as the

remaining goals get harder

• Go back to the start (or another earlier state) when unable

to extend current test

John Rushby, SR I sal-atg: 11

An Efficient Test Set

Less redundancy, and longer tests tend to find more bugs

John Rushby, SR I sal-atg: 12

The SAL Automated Test Generator: sal-atg

• SAL is scriptable in Scheme

• sal-atg implements the method described in a few hundred

lines of Scheme

◦ (Re)starts use either symbolic or bounded model checking

? Parameterized choice and search depth

◦ Extensions use bounded model checking

? Parameterized incremental search depth

◦ Optional slicing after each extension or each restart

◦ Customizable output to drive test harness

John Rushby, SR I sal-atg: 13

Example

• sal-atg stopwatch clock stopwatch goals.scm -ed 5 --incremental

In 5 seconds, generates single test case of length 17 that

covers the states and transitions of the Statechart

• sal-atg stopwatch clock stopwatch goals.scm -ed 5 -id 0 --incremental

--smcinit

• Takes 106 seconds to cover flowchart as well: adds test of

length 101 for middle junction and one of length 6,001 for

jabr

John Rushby, SR I sal-atg: 14

Experimental Results

• Rockwell Collins has developed a series of flight guidance

system (FGS) examples for NASA

• SAL translation of largest of these kindly provided by UMN

• Model has 490 variables (576 state bits), 196 reachable

control states, and 313 transitions

◦ Takes 61 seconds to generate single test case of length

45 that covers all states

◦ Takes 98 seconds to generate a single test of length 55

that covers all transitions

• Without extensions, get 73 tests to cover transitions: 1 of

length 3, 9 of length 2, and the rest of length 1

◦ Poor mutant detection

• We are in the process of testing our tests

John Rushby, SR I sal-atg: 15

Test Engineering with Automation

• Generating tests just to achieve structural coverage is a poor

strategy

• Traditional test engineers develop tests to explore interesting

cases, requirements, fault hypotheses

• We need to give them a way to do this using automation

• Specify the desired tests rather than constructing them

• Develop an observer module that sets a variable TRUE when

a test has achieved some purpose

• Tell sal-atg to search for conjunction of each trap variable

with the purpose

• In general, sal-atg can search for arbitrary conjunctions

◦ E.g., product of structural coverage on control states and

boundary coverage on some data structure

John Rushby, SR I sal-atg: 16

Example Shift Scheduler

[gear ==3]

[gear == 3]

[V <= shift_speed_32]

[gear == 1]

[V > shift_speed_23]

[V > shift_speed_34]

[V <= shift_speed_21] [V > shift_speed_12] [V <= shift_speed_43]

[V > shift_speed_23]

[V <= shift_speed_23]

[gear == 2]

[gear == 4]

[V <= shift_speed_43]

[V > shift_speed_34]

[gear == 2][V <= shift_speed_21]

[V > shift_speed_12]

third_gear
entry: to_gear=3;first_gear

entry: to_gear = 1;

transition12

[ctr > DELAY]

shift_pending_a
entry: ctr=0;
 to_gear=1;
during: ctr=ctr+1;

shifting_a
entry: to_gear=2;

transition23

[ctr > DELAY]

shift_pending2
entry: ctr=0;
 to_gear=2;
during: ctr=ctr + 1;

shifting2
entry: to_gear=3;

transition34

[ctr > DELAY]

shift_pending3
entry: ctr=0;
 to_gear=3;
during: ctr = ctr+1;

shifting3
entry: to_gear=4;

fourth_gear
entry: to_gear =4;

second_gear
entry: to_gear=2;

transition43

[ctr > DELAY]

shift_pending_d
entry: ctr=0;
 to_gear =4;
during: ctr=ctr+1;

shifting_d
entry: to_gear=3;

transition32

[ctr > DELAY]

shift_pending_c
entry: ctr=0;
 to_gear=3;
during: ctr=ctr+1;

shifting_c
entry: to_gear=2;

transition21

[ctr > DELAY]

shift_pending_b
entry: ctr=0;
 to_gear=2;
during: ctr = ctr+1;

shifting_b
entry: to_gear=1;

John Rushby, SR I sal-atg: 17

Shift Scheduler

• One input is the gear currently selected by the gearbox

• Tests often change this discontinuously (e.g., 1, 3, 4, 2)

• Can easily establish the test purpose to change only in single

steps, and to change at every step

John Rushby, SR I sal-atg: 18

Please Try It Out

• Main FM tools home page: http://fm.csl.sri.com

• SAL home page: http://sal.csl.sri.com

• SAL-atg (next week): http://sal.csl.sri.com/pre-release

John Rushby, SR I sal-atg: 19

