
1iri

Using model checking techniques to
analyze interface moding and timing

problems in interactive systems

Michael Harrison, Karsten Loer & Jose Campos
The Interdisciplinary Research Collaboration in Dependability (DIRC)

York, Newcastle and University of Minho at Braga

2iri

York HCI Group

• Alistair Edwards, Andrew Monk, Peter Wright
• Dependability Interdisciplinary Research

Collaboration
– Newcastle, City, Edinburgh, Lancaster, York
– Six year project since 2000

• ADVISES
– EU Human error in interactive systems
– Also Glasgow, Liege, Paderborn, Pisa, Risoe,Toulouse

• Dependable home
– Funding: Joseph Rowntree Trust, focus assisting elderly

• Focus:
– Mathematically based models, structured methods,

dependability arguments in a interdisciplinary context

• Now move to establish Informatics Research
Institute, Newcastle: continuing dependability
research

3iri

Overview

• Two examples:
– Mode problem on flight-deck
– Mobile device in the context of process control,

using information relevant to spatial context to
interpret user action

• The actions that the system might perform
may depend on previous operator actions or
context

• Require ways to check the design of such
devices in order to understand these contexts
better and the effect that they have

• Talk discusses the role that model checking
can play and different modelling notations

4iri

Altitude bust problem (Palmer,
Degani, Rushby)

• MCP influences aircraft ascent/descent depending on operating
pitch mode

• VERT_SPD (vertical speed pitch mode): instructs the aircraft to
maintain the climb rate indicated in the MCP (the airspeed will
be adjusted automatically)

• IAS (indicated airspeed pitch mode): instructs the aircraft to
maintain the airspeed indicated in the MCP (the climb rate will
be adjusted automatically)

• ALT_HLD (altitude hold pitch mode): instructs the aircraft to
maintain current altitude

• ALT_CAP (altitude capture mode): internal mode used by the
aircraft to perform a smooth transition from VERT_SPD or IAS
to ALT_HLD (see ALT below)

• A capture switch (ALT) when armed causes the aircraft to stop
climbing when the altitude indicated in the MCP is reached

5iri

MCP (includes, attributes, actions)

interactor MCP
 includes
 aircraft via plane
 dial(ClimbRate) via crDial
 dial(Velocity) via asDial
 dial(Altitude) via ALTDial
attributes
 vis pitchMode: PitchModes
 vis ALT: Boolean
actions
 vis enterVS, enterIAS, enterAH, toggleALT,
 enterAC

6iri

MCP (action effects and permissions)
axioms
 # Action effects
 (0) [] plane.altitude = 0
 (1) [crDial.set(t)] pitchMode'=VERT_SPD ^ ALT'=ALT
 (2) [asDial.set(t)] pitchMode'=IAS ^ ALT'=ALT
 (3) [ALTDial.set(t)] pitchMode'=pitchMode ^ ALT'
 (4) [enterVS] pitchMode'=VERT_SPD ^ ALT'=ALT
 (5) [enterIAS] pitchMode'=IAS ^ ALT'=ALT
 (6) [enterAH] pitchMode'=ALT_HLD ^ ALT'=ALT
 (7) [toggleALT] pitchMode'=pitchMode ^ ALT' neq ALT
 (8) [enterAC] pitchMode'=ALT_CAP ^ ~ALT'
 # Permissions
 (9) per(enterAC) ->

 (ALT ^ (|ALTDial.needle - plane.altitude| <= 2))

7iri

MCP (obligations and invariants)

Obligations
 (10) (ALT ^(|ALTDial.needle - plane.altitude| <= 2) ->

obl(enterAC)
 (11) (pitchMode=ALT_CAP ^ (plane.altitude=ALTDial.needle) ->
 obl(enterAH)
 # Invariants
 (12) pitchMode=VERT_SPD -> plane.climbRate=crDial.needle
 (13) pitchMode=IAS -> plane.airSpeed=asDial.needle
 (14) pitchMode=ALT_HLD -> plane.climbRate=0
 (15) (pitchMode=ALT_CAP ^ plane.altitude<ALTDial.needle) ->
 plane.climbRate=1
 (16) (pitchMode=ALT_CAP ^ plane.altitude>ALTDial.needle) ->
 plane.climbRate=-1

8iri

Modelling the environment

 interactor aircraft

 attributes

 altitude: Altitude

 airSpeed: Velocity

 climbRate: ClimbRate

 actions

 fly

 axioms

 [fly] (altitude' >=altitude - 1 ^ altitude' <=altitude + 1) ^

 (altitude' <altitude -> climbRate' <0) ^

 (altitude'=altitude -> climbRate'=0) ->

 (altitude' >altitude -> climbRate' >0)

9iri

Pilot expectation about how the
system operates

• “Whenever the pilot sets the automation to climb up
to a given altitude, the aircraft will climb until such
altitude is acquired and then maintain it.”

• Are there situations when this does not occur?
• Are there features of the design which might conspire

against this happening?

• Rather than focus on the user’s expectation or
performance set constraints on the behaviours that
are possible in order to explore whether there are
possible areas in which the user might have
problems

10iri

Checking constraints

• If the altitude capture (ALT) is armed the aircraft will
stop climbing at the desired altitude (selected in
ALTDial). This can be expressed as the CTL formula:
– AG((plane.altitude<ALTDial.needle^ALT)->

AF(pitchMode=ALT_HLD^
plane.altitude=ALTDial.needle))

• A trace generates a situation in which the pilot
continuously changes the climb rate when altitude
armed

• An additional condition excludes the possibility of
descending
– AG((plane.altitude<ALTDial.needle^ALT)->

AF((pitchMode=ALT_HLD^
plane.altitude=ALTDial.needle)
v (plane.climbRate=-1))

11iri

An interesting trace
• Checking leads to trace indicative that changing the

pitch mode to VERT_SPD (for instance by setting the
corresponding dial) when in ALT_CAP terminates the
request to stop climbing at the target altitude

• When the pitch mode changes to ALT_CAP, altitude
capture is switched off (see Axiom 8) even though
the aircraft is still climbing.

• Subsequent pilot action causing change to pitch
mode means aircraft climbs past the target altitude

• The counterexample prompts the designer to
consider whether there is enough information
provided by the MCP so that the pilot may be kept in
the loop.

• No assumed model of pilot interacting with device,
however trace highlights situation that may be of
human factors concern

Property checking

• Exhaustive behavioural usability analysis of interactive
systems
– Moding, visibility, recoverability, consistency, predictability ...

– Analysis typically performed by usability experts

• For “traditional” dependability there is often formal analysis
of
– system-theoretic properties: e.g. stability/continuity, robustness

– dynamic temporal properties: safety, liveness, timing

• … and the analysis is performed by formal methods experts

• Several issues are related, e.g. recoverability and
robustness

Formalising Usability Requirements

AG(<configuration> & <user_input>)

-> AX EF(<configuration>)

recovery

template:

In all possible execution paths it is possible

to reach a previously visited configuration after

an unwanted user_input occurred.

“Users often choose system functions by mistake and will need

 a clearly marked ‘emergency exit’ to leave the unwanted state

 […]. Support undo and redo.” (Nielsen and Mack 94)

• Dwyer’s templates can also be addressed from a usability
point of view:

• Based on such templates a CTL property editor can be
developed

Templates for Temporal Logic properties

16iri

17iri

• Counter example
– Can traces point to

interaction problems?

– Traces contain
information about:

• all system states that
are relevant

• users involved
• environmental factors

• traces can be quite long
and hard to read

/* Query */

AG(playing_state=CD_IDLE)&

AF(~PLAY_SIGNAL) -> (~EF

(playing_state=CD_PLAY))

/* state 1 */

CTRL_MECH.state = OFF,

CTRL_MECH.playing_state = INACTIVE,

CTRL_MECH.CD_MODE = 0,

USER.pressONOFF_Button = 1,

CTRL_ELEM.ONOFF_SIGNAL = 1,

USER.pressPAUSE_Button = 0,

CTRL_ELEM.PAUSE_SIGNAL = 0,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = QUIET,

[...]

/* state 4 */

CTRL_MECH.state = ON,

CTRL_MECH.playing_state = CD_IDLE,

CTRL_MECH.CD_MODE = 1,

USER.pressPAUSE_Button = 1,

CTRL_ELEM.PAUSE_SIGNAL = 1,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = QUIET,

[...]

/* state 5 */

CTRL_MECH.state = OFF,

CTRL_MECH.playing_state = INACTIVE,

USER.pressPAUSE_Button = 1,

CTRL_ELEM.PAUSE_SIGNAL = 1,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = QUIET,

[...]

/* state 6 */

CTRL_MECH.state = OFF,

CTRL_MECH.playing_state = INACTIVE,

USER.pressPAUSE_Button = 1,

CTRL_ELEM.PAUSE_SIGNAL = 0,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = MUSIC,

[...]

/* Query */

AG(playing_state=CD_IDLE)&

AF(~PLAY_SIGNAL) -> (~EF

(playing_state=CD_PLAY))

/* state 1 */

CTRL_MECH.state = OFF,

CTRL_MECH.playing_state = INACTIVE,

CTRL_MECH.CD_MODE = 0,

USER.pressONOFF_Button = 1,

CTRL_ELEM.ONOFF_SIGNAL = 1,

USER.pressPAUSE_Button = 0,

CTRL_ELEM.PAUSE_SIGNAL = 0,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = QUIET,

[...]

/* state 4 */

CTRL_MECH.state = ON,

CTRL_MECH.playing_state = CD_IDLE,

CTRL_MECH.CD_MODE = 1,

USER.pressPAUSE_Button = 1,

CTRL_ELEM.PAUSE_SIGNAL = 1,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = QUIET,

[...]

/* state 5 */

CTRL_MECH.state = OFF,

CTRL_MECH.playing_state = INACTIVE,

USER.pressPAUSE_Button = 1,

CTRL_ELEM.PAUSE_SIGNAL = 1,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = QUIET,

[...]

/* state 6 */

CTRL_MECH.state = OFF,

CTRL_MECH.playing_state = INACTIVE,

USER.pressPAUSE_Button = 1,

CTRL_ELEM.PAUSE_SIGNAL = 0,

USER.pressPLAT_Button = 0,

CTRL_ELEM.PLAY_SIGNAL = 0,

DISPLAYS.AUDIO_state = MUSIC,

[...]

19iri

Trace comparison

20iri

Sample domain: A processing plant

21iri

Modelling a mobile device

• Ubiquitous control of a sewage plant
• Control device implements a “bucket”

metaphor
– Buckets filled with status information relating to

pumps, valves and displays passed as the
operator does rounds in the plant

– Monitor role and control role, buttons also
collected into buckets – currently limited to two
controls at a time

• Need to model the context in order to
understand how the device relates to the
context

22iri

Alternative approach to modelling
interactive Systems (Degani)

CONTROL MECHANISM (=device core)

ENVIRONMENT

DISPLAYS

enviro
nmental

layer

interfa
ce la

yer

syste
m core

layer

CONTROL

ELEMENTS

USER (TASKS)

system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

23iri

Model 1: controlled devices and
environment

system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

24iri

Model 2: Pucketizer “bucket”
mechanism

25iri

Model 3: Pucketizer device controls

system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

26iri

Analysis: Model validity

Does the model behave as intended?
– “sanity”: deadlock-freedom, state/event reachability
– “goal reachability”:

• Can product C be produced?
• What is the easiest way to produce product C?
• What is the “best” way to produce C under assumptions

a1...an?
• Is it possible to reach unsafe states?

…

system

model

system

model

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

27iri

Trace Comparison

Goal/Property:
“Reachability
of a state
where end
product C is
released”

c)

c) Pucketizer (forgetful
operator)

b)

b) Pucketizer

a)

a) Control room interface

system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

28iri

Allocation of Function

• Aim: To allocate functions amongst the human and
machine roles

• So that:
– A coherent set of roles are produced
– Automation does not interfere with the person’s ability to

perform the role.
– Automation supports the person’s performance of a role.
– There are acceptable levels of technical risk.
– Proposals are capable of satisfying the functional

constraints.

29iri

Dynamic allocation assumptions

• In the face of a change in circumstances,
workload or situation awareness for example,
switch level of automation to perform the
same function

• In practice, this is a very simplistic view of the
way operators need to handle time critical
situations

30iri

 Hydraulics fault [Fields & Merriam ’99, Doherty, Massink, Faconti ‘01]

Blue

Reservoir

Green

Reservoir

Rudder

Aileron

Servo 1

Servo 2

Servo 1

Servo 2

Decision parameters:

Performance and time
 Current workload
 Concurrent tasks
 Dynamics of problem [fluid loss]

 Stage of mission [time to land]

Diag Fix

Fail

Diag

Fail

Fail

Fail

Land

Fix

31iri

Analysis of decision procedure

• Appropriate automation: operator in control?
– What parameters in the decision
– What boundaries to the decision

• Initial analyses concerned with extreme conditions
– based on model checking (similar to Doherty, Massink and

Faconti)

• A family of techniques required concerned with
typical behaviours, extreme behaviours, experiment

• One concern is how to deal with battery of methods –
can we focus experiment using analysis, for
example?

32iri

PaintShop: Task

Supervisory control of a dual-line production plant

Money earned per item painted [1p]

Automatic or manual painting [4s vs. 2s]

Fault monitoring and servicing: Repair or replace

Repair: No cost, but line unavailable for 24s
Replace: Line available immediately,

 but [6, 8, 12]p cost

33iri

Temporal properties
• Sequencing

– How does the sequence in which actions are performed
influence performance?

• Real-time
– What are best/worst case execution times for a job?

– How do bcet/wcet vary under different workloads?

• Suitable strategies for decision making:
– What is the minimal time required to paint all items

(regardless of costs or replacing parts)?

– What costs does the operator need to be prepared to pay
in order to paint all items within a certain time limit?

system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

34iri

Real-time models

• real-time is explicit element of the model,
represented by continuous variables

35iri

Explorative application of model checking

1. starting from a device-centric model
=> all possible user inputs

2. gradually add assumptions about user and
environment behaviour
=> sub-set of “sensible” user inputs

• formulation of assumptions:
1. as part of the property specification
2. by model enhancements (e.g. observer

automata or model decorations)
system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

36iri

Influence of task models on explored input
space

• no task model

• constrained
“task space”

• normative task modelinputs for a

certain task

“all possible” user inputs

37iri

“Task space” constraints1

Focus of analysis:

Given:

1. a device specification and

2. a desired target “situation” (= state

of the device and environment)

Question: What assumptions can/need

to be made about the user?
system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

38iri

“Task space” constraints2

• Goal:
Constrain search by
adding constraints
(= set of state machines)

on the user behaviour

• Example:
“Whenever the user
realises that a nozzle
is blocked he/she will
opt to either replace
or repair the nozzle”

responsive user:

39iri

Normative task models

Focus of analysis:

Given: A specification of

1. the device under development,

2. relevant parts of the environment and

3. a normative task model

Question: What states of the environment

can be reached?
system

model

system

model system

property

system

property

“TRUE” or

counter-example/

witness traces

“TRUE” or

counter-example/

witness traces

model checker
model checker

40iri

Example task: “Once all pumps are off,
switch pump 1 ON
(after at most n steps)”

n

Task violation:

e.g. Hollnagel’s

error phenotypes
(here: delay and replacement)

41iri

Timed user models1

• What is the maximal/minimal time required
for a repair (depending on size and location
of leak)?

42iri

Modelling complex user decisions

• decisions that depend on multiple cost
trade-offs
(time/leakage/monetary costs/ …)

43iri

assert SAN1:

 F ((PUMP5CTRLM.state=PMP5ON)

 & (TANK1.state=HOLDS_C));

assert alwaysForget:

 G!(savePmp1Controls| … |savePmp5Controls);

assume alwaysForget;

using alwaysForget prove SAN1;

assert SAN1:

 F ((PUMP5CTRLM.state=PMP5ON)

 & (TANK1.state=HOLDS_C));

assert alwaysForget:

 G!(savePmp1Controls| … |savePmp5Controls);

assume alwaysForget;

using alwaysForget prove SAN1;

Adding assumptions
about operator behaviour

• temporal logic assertions:
“the operator always forgets to store pump
controls”

44iri

Adding assumptions
about operator behaviour

• observer automata: the “forgetful” operator

• check properties under the assumption that
violation states (“forget”) are absent

45iri

Conclusions:
Model checkers are good at…

• exhaustive analysis
• “automatic” analysis

– provided that appropriate input is supplied

• analysis of behavioural reachability properties
– ordering/sequencing of tasks:

• e.g. Hollnagel’s error phenotypes:
• repetition, reversal, omission, delay, premature action,

replacement, insertion, and intrusion

– (physical) timing
– mode complexity
– dialogue control:

• visibility of action effects, visibility of available actions,
recoverability, consistency, error prevention, flexibility,
efficiency of use

46iri

Conclusions:
Model checking has limitations…

• deliver single, sometimes “trivial”, traces
• hard/impossible to determine tendencies,

e.g. certain types of user behaviour,
characteristics of components that
contribute to potential errors …

• technique does not suggest corrections

• difficult/unsuitable to use for analysis of
representational properties (layout, direct
manipulation etc.)

