Validating a Validation Technology Towards a Prototype Validation Experiment

Rainer Knauf

Technical University of Ilmenau School of Computer Science and Automation Ilmenau, Germany

Torsten Kurbad

Knowledge Media Research Center *Tübingen, Germany*

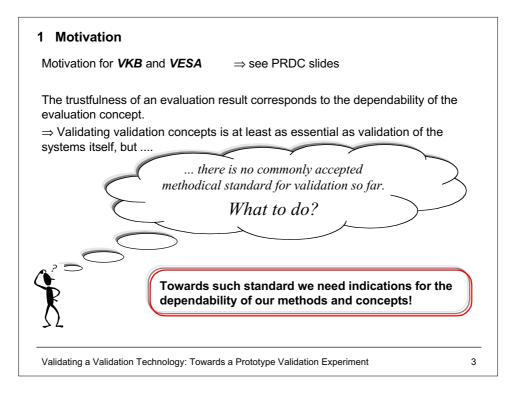
Setsuo Tsuruta Hirokazu Ihara

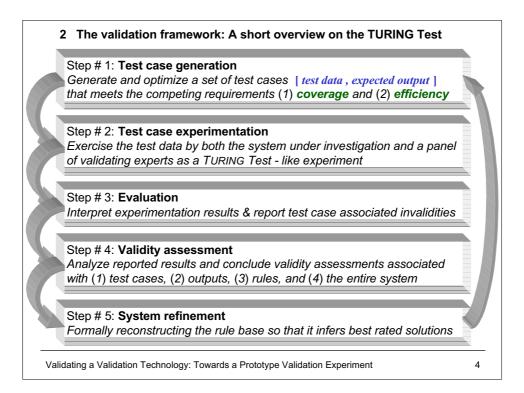
Tokyo Denki University School of Information Environment *Tokyo, Japan*

Avelino J.Gonzalez

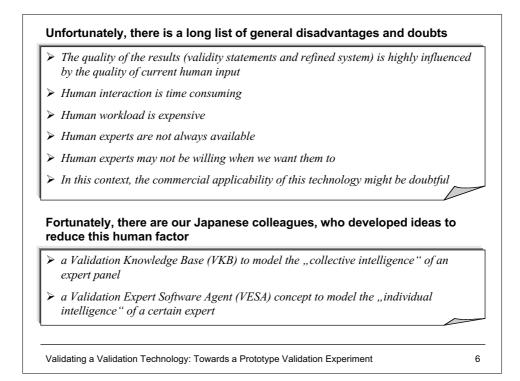
University of Central Florida Dept. of Electrical and Computer Engineering Orlando, FL, USA

Validating a Validation Technology: Towards a Prototype Validation Experiment


Validating a Validation Technology Towards a Prototype Validation Experiment


- 1. Motivation
- 2. The validation framework

A short overview on the Turing Test


- 3. Basic concepts to involve validation knowledge An overview on VKB and VESA
- 4. The database structure of TestMeToo
- 5. The framework and the involvement of VKB and VESA
- 6. Towards a prototype application
- 7. Implementation Aspects
- 8. Summary, conclusion, actual and upcoming research and development

Validating a Validation Technology: Towards a Prototype Validation Experiment

3 Basic concepts to involve validation knowledge: VKB and VESA

Objective: Limit the workload of experts to break the limitation of dependability

3.1 TSURUTA'S VKB Idea

knowledge transfer by sharing the experts' validation knowledge with

- > other experts
- knowledge engineers
- computers

by

- > memorizing a commented validation protocol and
- > developing a Validation Knowledge Base from it.

The basic original idea is collecting collects validation (meta-) knowledge in a

- a Validation Data Base (VDB), which collects all upcoming data within the validation process and
- a Validation Knowledge Base (VKB), which analyzes, selects, preprocesses and memorizes relevant historical data of the VDB.
- \Rightarrow see PRDC slides

Here, we utilize this idea to model collective expertise of an expert panel.

Validating a Validation Technology: Towards a Prototype Validation Experiment

7

3.2 TSURUTA'S and UEHARA'S VESA Idea

Objective

Modeling an individual expert's validation knowledge within a Validation Software Expert Agent (**VESA**)

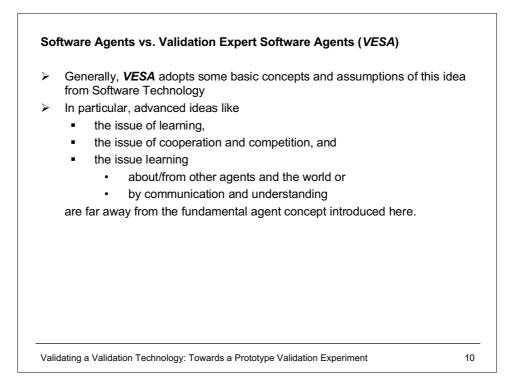
Underlying basic assumptions

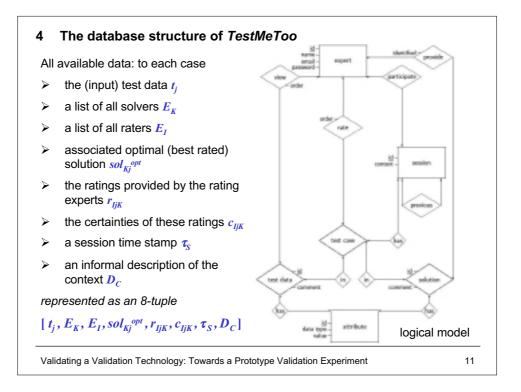
- Experts who provide similar solutions to test cases and similar ratings to other experts' solutions might have a similar "knowledge structure"
 - ⇒ A particular expert might be modeled by an agent that provides the response of another human expert, who had a maximum similarity to him in the past
- "knowledge structures" do change over time
 - \Rightarrow the degree of similarity depends on both
 - > the ratio of same reflections (solutions, ratings) and
 - the "age" of this identical behavior

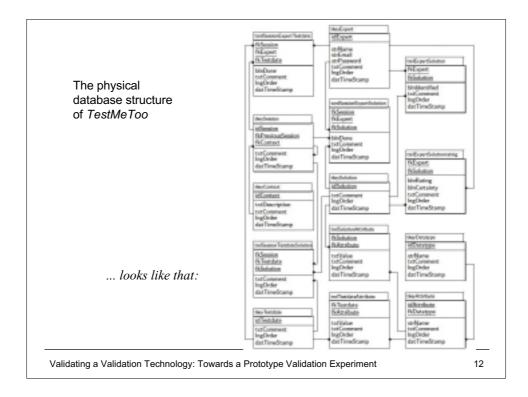
Here, we utilize this idea to model individual expertise of an expert

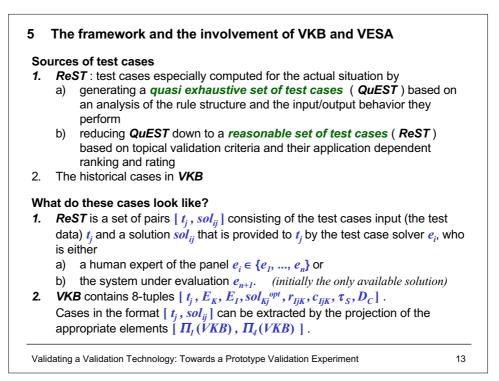
What is a VESA?

- > autonomous software agent corresponding to a particular human expert
- gains personal validation knowledge mainly from personal data such as (not always best) solutions, ratings, etc. of its corresponding human expert validator
- can be considered to be a model that represents the validation experience and behavior of a group or an organization of validation experts

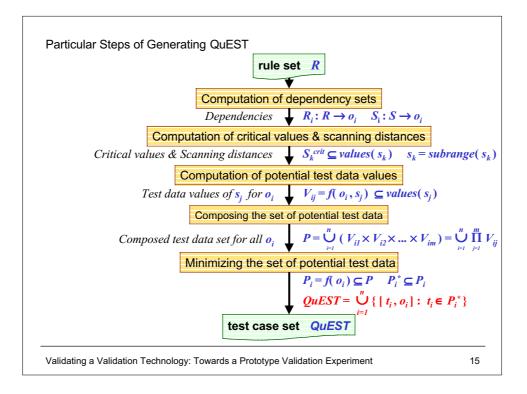

The learning issue of VESA

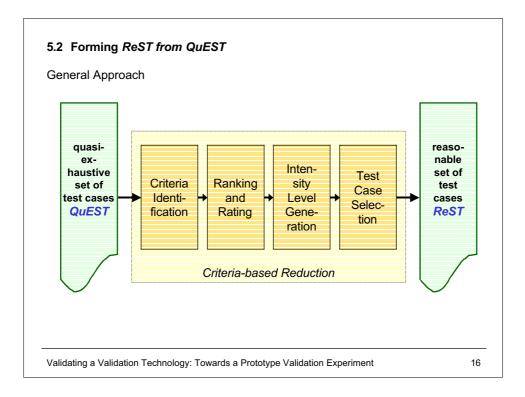

- learns from test inputs and the associated answers, their certainties and their ratings provided by the human validators
- increases its validation competence through validation knowledge gained by various sessions over time
- become more intelligent as well as more adaptive to wider (similar but slightly different) applications

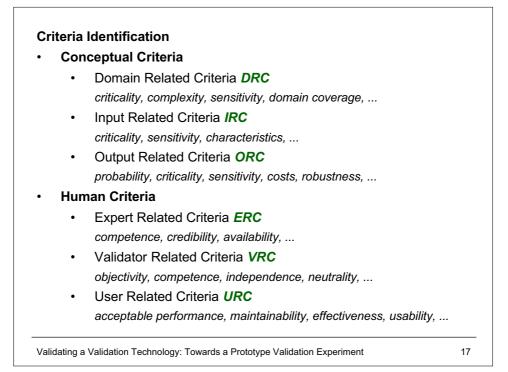

Advantage of VESA over humans


- > it also gains the validation knowledge of other validators
- Anonymity and impartiality is kept even if they get information from other experts: They do not need the name of each expert, but rather an *ID* to distinguish whether or not the information belongs to the same expert.

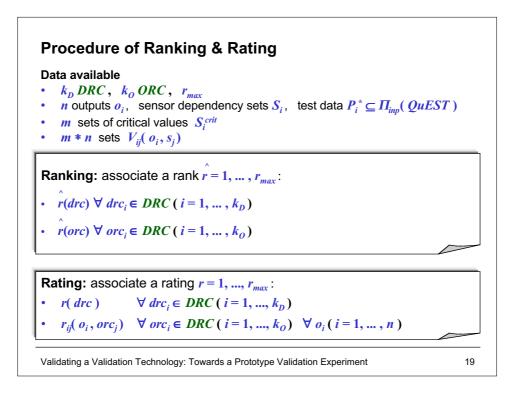
Validating a Validation Technology: Towards a Prototype Validation Experiment

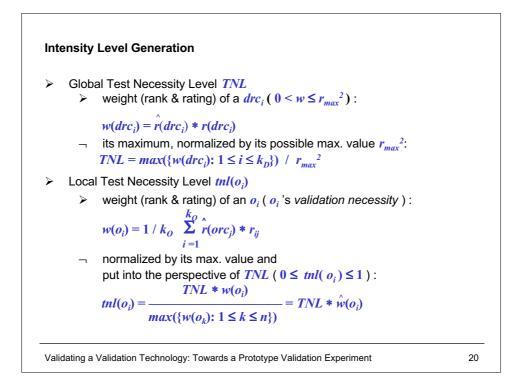


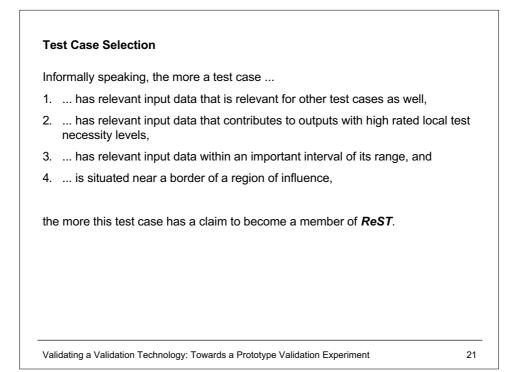


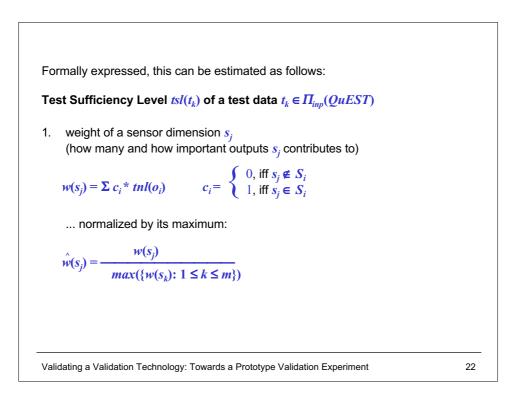

5.1 Generating QuEST

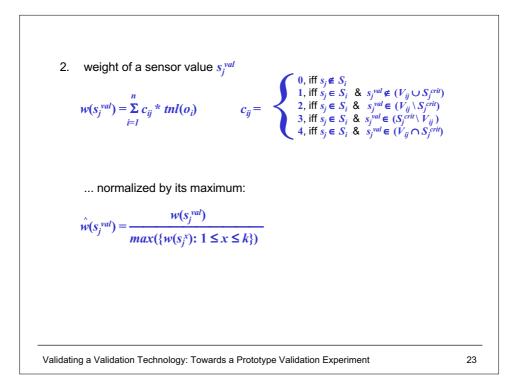
General Approach

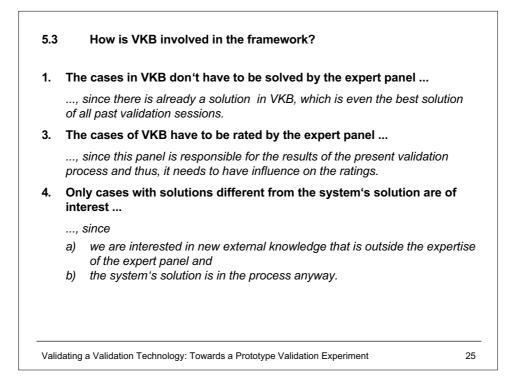

- 1. Break down the range of an input into sub-ranges where its values are considered to be equivalent in terms of its effects on the outputs
- 2. Compute an initial set of potential test data *P* based upon all computable combinations of values that surround these sub-ranges
- 3. Sort these data into several sets P_i of data according to their system's output o_i , i.e. form partitions of P
- 4. Filter all *P_i* by eliminating those that are subsumed by others, i.e. exclusively surrounded by test cases with the same system's output

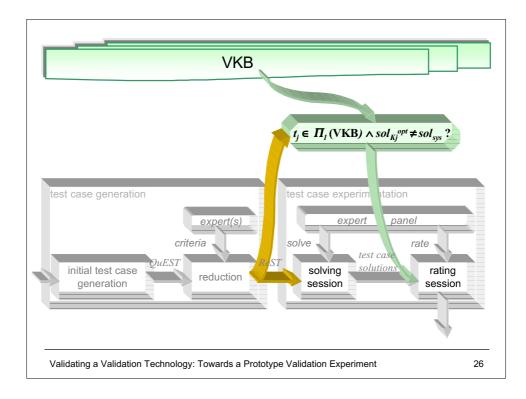







\triangleright	ranking
	describes proportions among various criteria
	rating
	describes the degree of a criterion's influence on the investigated domain for the considered output
	both procedures, ranking and rating the assessments are quantified by natural mbers of a range from zero (0) to a top level assessment r_{max} .
nui To	
nui To	mbers of a range from zero (0) to a top level assessment \mathbf{r}_{\max} . ensure the entire expressiveness of such a quantification, in both procedures,
nui To	mbers of a range from zero (0) to a top level assessment r_{max} . ensure the entire expressiveness of such a quantification, in both procedures, nking and rating the complete range should be used: Both





3. weight of a test data t_k
$$\begin{split}
& & w(t_k) = 1/m \sum_{j=1}^{m} \hat{w}(s_j) * \hat{w}(s_j^k) \\
& \dots \text{ normalized by its maximum & complemented as to 1:} \\
& & t_sl(t_k) = 1 - \frac{w(t_k)}{max(\{w(t_x): 1 \le x \le |P_i^*|\})} \\
\end{split}$$
Forming **ReST** by reducing $\Pi_{inp}(QuEST) \subseteq \bigcap_{i=1}^{n} P_i^{*:}$ $ReST = \{ [t_i, o_i] : (t \in P_i^*) \land (tsl(t) \le tnl(o_i)) \} \\$ Remember, **ReST** is the one of the sources of test cases for the TURNG Test.

Objectives

- > Forming a model of each validator's individual knowledge and behavior
- > Successive refinement of this model by consecutive validation session

Source of VESA's knowledge

- solving and rating results
 - a) of the associated human origin
 - b) of other human validators who often have the same opinion as the associated human origin

For (b), anonymity needs to be ensured.

Validating a Validation Technology: Towards a Prototype Validation Experiment

27

5.4.1 Dynamic VESAs > are formed just in the moment of their need and "forgotten" after their usage model just the required aspect of their human origin based on historical ≻ information of former sessions (i.e. not the current session) \geq are requested in case its human origin is not available may be requested even if the human origin is present to validate the VESA \geq concept itself by comparing the behavior of VESA with the real one of the human origin. (*subject of upcoming research*) The knowledge base to dynamically form a VESA in case of need is simple: For > each human expert \triangleright each and every solution to each test data and each and every rating of \triangleright \triangleright each and every historic session indicated by its time stamp. Validating a Validation Technology: Towards a Prototype Validation Experiment 28

5.4.2 The formation and usage of a VESA for test case solving

If a validator e_i is not available to solve a present case t_i the following applies:

Step # 1

In case e_i solved (*with a solution different from "unknown"*) or rated t_j in former sessions, his/her provided or as "correct" rated solution with the latest time stamp τ_s will be provided by **VESA**.

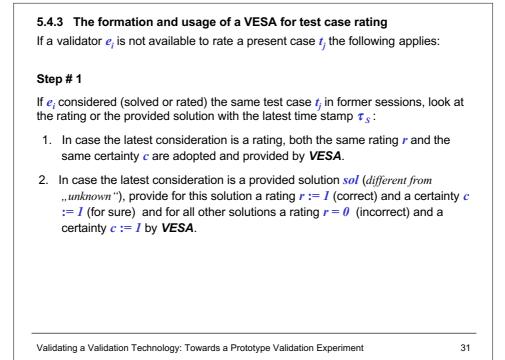
Step # 2

(1) All validators e', who ever delivered a solution or a ratring to the present case t_i form a set *Solver*^{θ}, which is an initial dynamic agent for e_i :

 $Solver_i^0 \coloneqq \{e' : [t_i, E_K, E_I...] \in VKB \land (e' \in E_K \lor e' \in E_I)\}$

(2) Select the most similar expert *e*_{sim} with the largest set of cases that have been solved by both *e*_i and *e*_{sim} (a) with the same solution and (b) in the same session. *e*_{sim} forms a refined dynamic agent *Solver*_i¹ for *e*_i:

$$Solver_i^{-1} \coloneqq e_{sim} : (e_{sim} \in Solver_i^{-0}) \land \\ (| \{ [[t_j, e_i, sol_{ij}, \tau_s], [t_j, e_{sim}, sol_{sim, j}, \tau_s]]: sol_{ij} = sol_{sim, j} \} | \rightarrow max!)$$

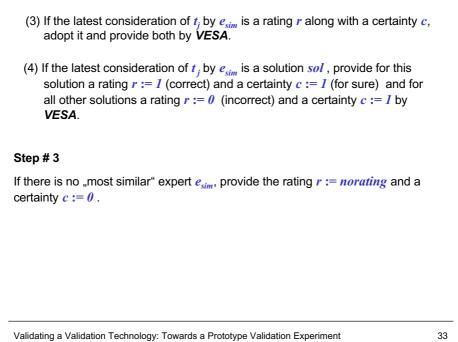

Validating a Validation Technology: Towards a Prototype Validation Experiment

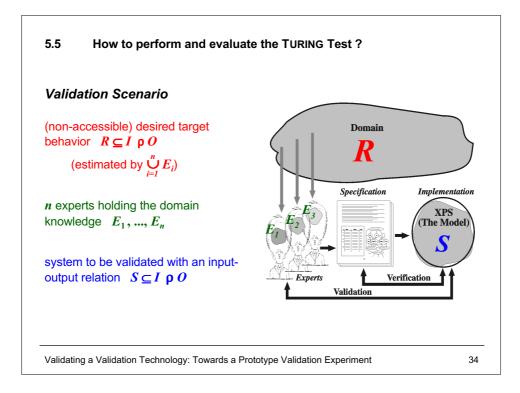
29

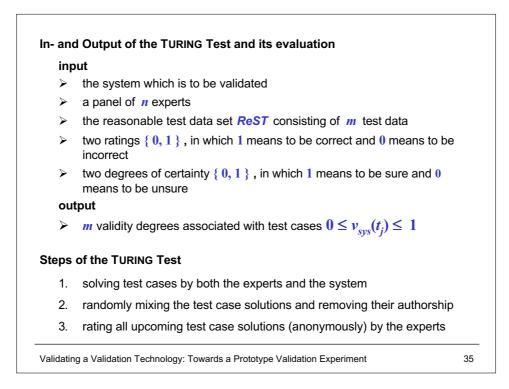
(3) Provide the latest provided or as "correct" rated solution of the expert e_{sim} to the present case t_i , i.e. the solution with the latest time stamp τ_s by **VESA**.

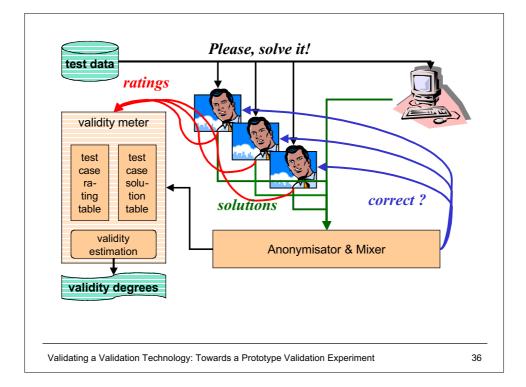
Step # 3

If there is no most similar expert, provide the solutionsol := unknown by VESA.




Step # 2


If e_i never considered (solved or rated) the test case t_j in former sessions, look for a "most similar" expert e_{sim} :
(1) All validators e', who ever delivered a rating or a solution (*different from* "unknown") to the present case t_j form a set Solver⁰_i, which is an initial dynamic agent for e_i:
Solver⁰_i = {e': ([t_j, E_K, E_i...]∈ VKB) ∧ ((e' ∈ E_K) ∨ (e' ∈ E_i))}
(2) Select the most similar expert e_{sim} with the largest set of cases that have been considered (solved or rated) by both e_i and e_{sim}

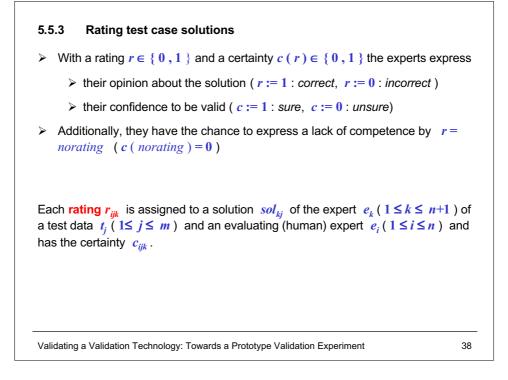

- with the same solution sol (different from ,, unknown") respectively the same rating r (different from ,, norating")
- > in the same session.
- *e*_{sim} forms a refined dynamic agent *Solver*¹_{*i*} for *e*_{*i*}:

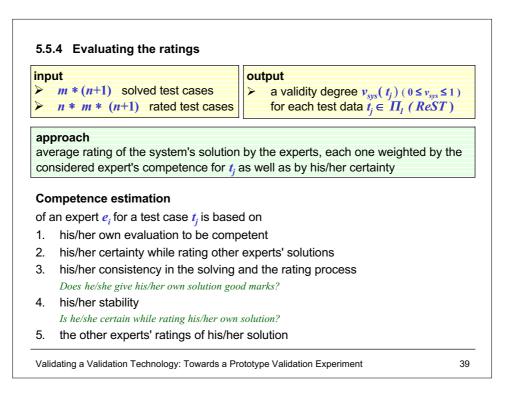
 $\begin{aligned} Solver_i^{1} &\coloneqq e_{sim} : (e_{sim} \in Solver_i^{0}) \land \\ (|\{[[t_j, e_i, sol_{ij}, \tau_s], [t_j, e_{sim}, sol_{sim,j}, \tau_s]] : sol_{ij} = sol_{sim,j}\} \bigcup \\ \{[[t_j, e_k, e_i, sol_{kj}, r_{ijk}, \tau_s], [t_j, e_k, e_{sim}, sol_{kj}, r_{sim,j,k}, \tau_s]] : r_{ijk} = r_{sim,j,k}\} |\rightarrow \max!) \end{aligned}$

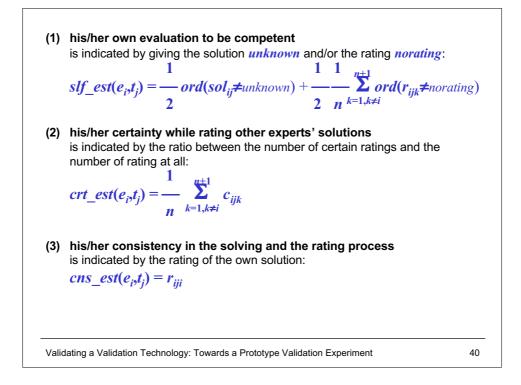
5.5.1 Solving test cases

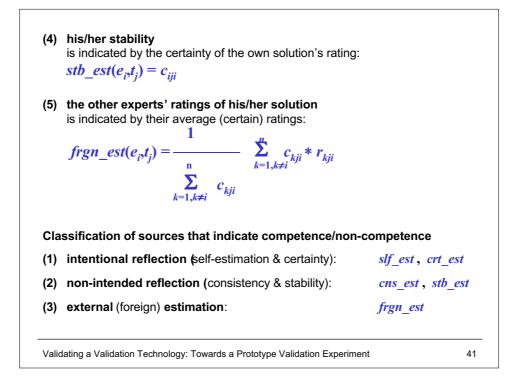
Solving *m* test data t_j by *n* (human) experts $e_1, ..., e_n$ and the system e_{n+1} leads to m * (n+1) solved test cases $[t_j, e_i, sol_{ij}]$ with the solution sol_{ij} .

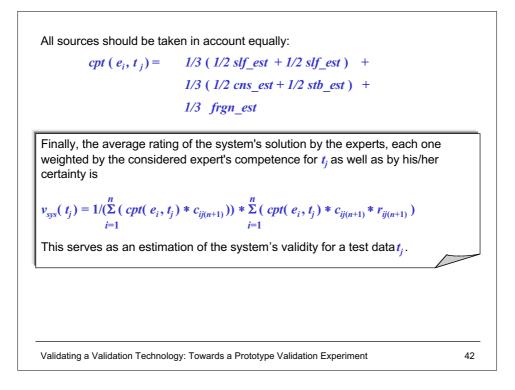
*sol*_{*ii*} is either a real output or *unknown* by its provider: *sol*_{*ii*} $\in O \cup \{ unknown \}$


The output set *O* is formed by **all** upcoming solutions:

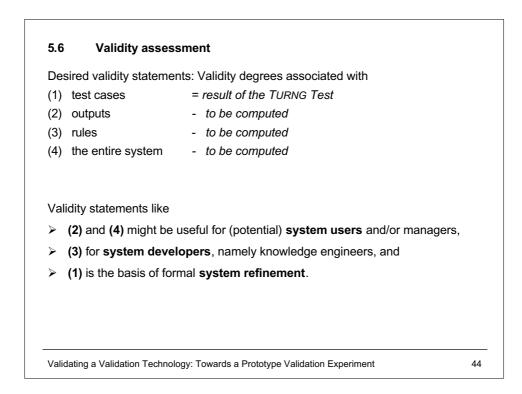

$$O = \Pi_2(E_{n+1}) \cup \Pi_2(\bigcup_{i=1}^n E_i) = \Pi_2(\bigcup_{i=1}^{n+1} E_i)$$

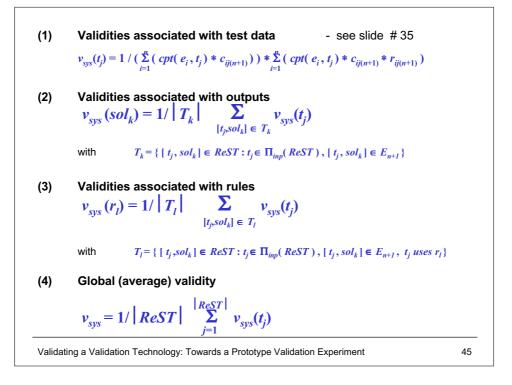

5.5.2 Mixing solutions and removing their authorship

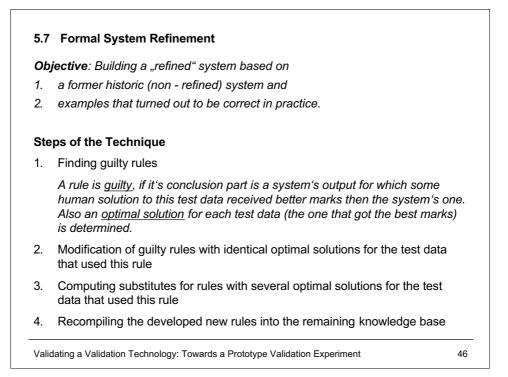

Each of the *n* human validators receives all the m * (n+1) upcoming solved test cases anonymously, i.e. without any information about the authorship.


Validating a Validation Technology: Towards a Prototype Validation Experiment

How is VKB involved in the TURING Test ?


1. utilization of VKB - see slide #26


- a) It is not used for the test case solving session
- b) Cases which have a "new" solution (different from the system's solution) in VKB, are subjects of the rating session as well.


2. maintenance of VKB

- The validation of the validation knowledge is ensured automatically:
 - > It is re-validated in future sessions by newly rating it.
- Dpdating, in this context, means adding new cases to VKB.
 - > The "experience" of a session is its (very best) solution $sol_{K_j}^{opt}$ to each test data $t_j \in \Pi_I(ReST)$ that was considered in the session.
 - > Additionally kept in VKB:
 - > a list of solvers E_K ,
 - > a list of raters E_I along with their ratings r_{IJK} and certainties c_{IJK}
 - > a time stamp $\boldsymbol{\tau}_{s}$ (to compute competence trends, e.g.) and
 - > an informal context description D_c

Validating a Validation Technology: Towards a Prototype Validation Experiment

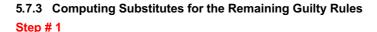
5.7.1 Finding Guilty Rules

v

- 1. The validity assessment procedure determined a rule-associated validity $v_{sys}(r_l) = 1/|T_l| \sum_{\substack{t_l, sol_k \\ i \in T_l}} v_{sys}(t_j)$
- 2. There is a set T_l^* of test cases with test data $t_j \in \prod_{inp} (T_l)$ and all solution parts which came up in the experimentation by any expert e_i (i = 1, ..., n, n+1): $T_l^* = T_l \cup \{ [t_i, sol(e_i, t_i)] : \exists [t_i, sol_k] \in T_l \}$
- 3. The set T_l^* can be split into subsets $T_{ll}^*, ..., T_{lm}^*$ according to their different solution parts $sol_1, ..., sol_m$.
- 4 Analogously to $v_{sys}(sol_k)$, a validity $v(r_l, sol_p)$ $(1 \le p \le m)$ of each solution sol_p , but only based on the test cases of T_{lp}^* can be computed:

$$(r_l, sol_p) = \frac{1}{|T_{lp}^*|} \sum \frac{\sum (cpt(e_i, t_j) * c_{ijq})}{\sum (cpt(e_i, t_j) * c_{ijq})} \sum (cpt(e_i, t_j) * c_{ijq} * r_{ijq})$$

Validating a Validation Technology: Towards a Prototype Validation Experiment


47

5 The optimal validity of r_l is the maximum of all v(r_l, sol_p) among the solutions sol_p occurring in T_l^{*}. The associated solution is the optimal solution sol_{opt} of r_l: v_{opt}(r_l) = v_{opt}(r_l, sol_{opt}) = max({ v(r_bsol₁), ..., v(r_b sol_m) }). v_{opt}(r_l) is an upper limit of the reachable rule-associated validity of r_l.
If v_{opt}(r_l, sol_{opt}) > v(r_l), there is a solution in T_l^{*} that got better marks than the system's one: v_{opt}(r_l, sol_{opt}) > v(r_l) ⇒ r_l is guilty
5.7.2 Simple Refinement by Replacing the Conclusion

If all test cases within T_l of a guilty rule r_l have the same optimal solution sol_k , which was different from the system's solution, the conclusion-part of this rule has to be substituted by sol_k :

 $\forall [t_{j}, sol_k] \in T_l: sol_s \text{ is optimal solution for } [t_j, sol_k] \implies$ $r_l: (\text{ if-part} \rightarrow sol_k) \iff (\text{ if-part} \rightarrow sol_s)$

Validating a Validation Technology: Towards a Prototype Validation Experiment

 T_l^* of a guilty rule r_l is split into subsets T_l^{*1} , ..., T_l^{*n} according to the solution $sol_s \in \prod_{outp}(T_l^*)$ ($1 \le s \le n$) for each $t_j \in \prod_{inp}(T_l)$ that obtained the highest validity $v(r_l, sol_s)$.

The if-part(s) of the new substitute rule(s) for a guilty rule r_l are expressions $exp_i \in E$ of p new alternative rules $\{r_l^1, ..., r_l^p\}$ for each T_l^s and will be noted as a set of sets

 $P_{l}^{s} = \{ \{ exp_{1}^{1}, ..., exp_{p_{1}}^{1} \}, \{ exp_{1}^{2}, ..., exp_{p_{2}}^{2} \}, ..., \{ exp_{1}^{p}, ..., exp_{p_{n}}^{p} \} \}$

The corresponding rules of P_i^s are

 $\begin{array}{ccc} p_1 & p_2 & p_p \\ r_1^{1:} \land e_1^{1} \rightarrow \operatorname{sol}_s & r_1^{2:} \land e_1^{2} \rightarrow \operatorname{sol}_s & \dots & r_1^{1:} \land e_1^{1} \rightarrow \operatorname{sol}_s \\ \downarrow & \downarrow i=1 & \downarrow i=1 \\ \end{array}$

Step # 2

Pos is the set of Positions (dimensions of the input space), at which the $t_i \in \prod_{inp} (T_l^{*s})$ are <u>not</u> identical.

The generation of the if-parts P_l^s is managed by a **Reduction System**, which is applied to triples $[T_l^{*s}, Pos, P_l^s]$ until *Pos* becomes the empty set \emptyset .

Validating a Validation Technology: Towards a Prototype Validation Experiment

49

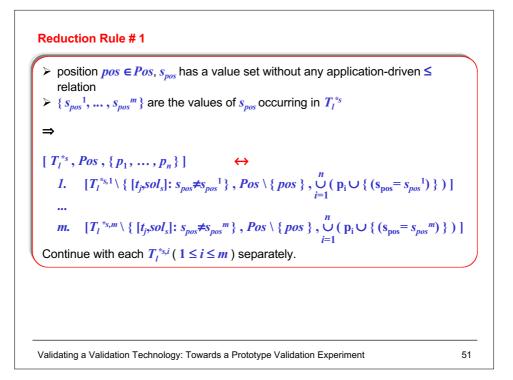
Step # 3

The starting point of the reduction procedure is $[T_l^{*s}, Pos, P_l^s]$ with

 $P_{l}^{s} = \{\{(s_{1}=s_{1}^{ident}), \dots, (s_{a}=s_{a}^{ident})\}\}$

 $s_1, ..., s_q$ are those positions, where all test data $t_j \in \prod_{inp}(T_l^{*s})$ have the same (identical) value s_l^{ident} , ..., s_q^{ident} and **Pos** is the set of the remaining positions:

 $Pos = \{s_i: \forall if-part \in P_l^s : (s_i = s_i^{ident}) \notin if-part\}$


Step # 4

Applying the Reduction System to $[T_i^s, Pos, P_i^s]$ until *Pos* becomes the empty set \emptyset .

> The Reduction system consists of two rules.

- The system is deterministic, i.e. exactly one of these rules is applicable at a time.
- The system terminates, since Pos looses one element in each cycle, i.e. at some point it must become empty.

Validating a Validation Technology: Towards a Prototype Validation Experiment

Production Rule # 2 • position $pos \in Pos$, s_{pos} has a value set with an application-driven \leq relation • $s_{pos}^{min} | s_{pos}^{max}$ are the smallest / largest value of s_{pos} in T_{l}^{*s} . • $| T_{l}^{*s}, Pos, \{p_{1}, ..., p_{n}\} | \Leftrightarrow |$ $| T_{l}^{*s}, Pos \setminus \{pos\}, \bigcup_{i=1}^{n} p_{i} \cup \{(s_{pos} \geq s_{pos}^{min}), (s_{pos} \leq s_{pos}^{max})\} \cup S_{excl}\}$ Second is the set of excluded values for s_{pos} that have to be mapped to a solution different from sol_{s} because of belonging to some other T_{u}^{*} with $v \neq s$: $S_{excl} = \{(s_{pos} \neq s_{pos}); \\ \exists [t_{j}, sol_{s}] \in T_{l}^{*s} \exists [t_{m}, sol_{v}] \in T_{u}^{*v} (v \neq s) \ \text{with} \\ \forall p \neq pos ((s_{p}^{-s} = s_{p}^{ms}) \wedge (s_{pos}^{-smin} \leq s_{pos}^{-smax} = s_{pos}^{-smax}))\}$

First, in case the *if* - part of a new rule contains a subset of expressions that is the *if* - part of another rule having an intermediate solution as its *then* - part, this subset has to be replaced by the corresponding intermediate solution:

 $\exists r_i: (if-part_1 \to int_1) \land \exists r_j: (if-part_2 \land if-part_1 \to concl)$ \Rightarrow $r_i \leftrightarrow (if-part_2 \land int_1 \to concl)$

Second, remove the useless rules that map to an intermediate result which is not used for further inference steps:

 $\exists r_i: (if-part \to int_1) \land \neg \exists r_j: (int_1 \land rest-if-part \to then-part) \\ \Rightarrow \\ r_i \leftrightarrow \emptyset$

Validating a Validation Technology: Towards a Prototype Validation Experiment

53

6 Towards a Prototype Application 6.1 **Knowledge Base** 6.1.1 Initial Informal Knowledge What application topic the fine for such an experiment that requests much human cooperation of "domain experts" > without having the money to hire them? The answer to this issue is: It must be a domain with a certain entertainment factor, so that they like this cooperation, for example ... The selection of an appropriate wine to a given dinner. **General Rules** Meals that are rich in content call for a wine that is rich in body. Light meals call for a light wine. Premium meals call for a fine and premium wine. \checkmark Validating a Validation Technology: Towards a Prototype Validation Experiment 54

Particular Rules

Meat

- ✓ <u>Light colored meat</u>, such as fowl and veal call for a fruity, grapy red wine with less tannin.
- ✓ *Fried and grilled meats* call for a young red wine rich in tannin.
- ✓ With <u>smoked meat</u> there is a correlation between the length of time in the meal's preparation and the time to mature the wine. Furthermore, tannins help to make the food digestible. Thus, a mature Barolo or a matureBrunello fits well.
- ✓ The autumnal and slightly sweet taste of <u>venison</u> calls for a strong partner. A dark, fruit-accentuated red wine from the "new world" is appropriate. Alternatively, a mature red wine from Burgundy, Bordeaux or the Rhone-Valley is acceptable.

Fish

- ✓ <u>Steamed fish</u> calls for a light, fresh and low acid-accentuated white wine. An alternative is a dry, fruity, low tannin Rosé.
- ✓ <u>Fried or grilled Fish</u> has an intensive taste and gets along well with a (possibly in a wooden barrel matured) white wine or a red wine that has not too much tannin. To summarize, a strong white wine or a low tannin red wine is acceptable.

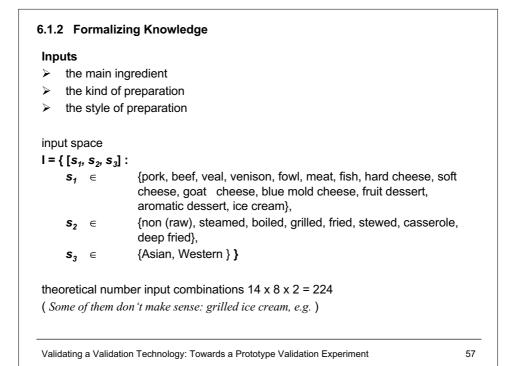
Validating a Validation Technology: Towards a Prototype Validation Experiment

55

Asian Meals

✓ The intensive flavoring and spice fits with the freshness and intensity of an aromatic white wine. Muscatel, Gewuerztraminer, Sauvignon Blanc, or a semi-dry Riesling are appropriate wines.

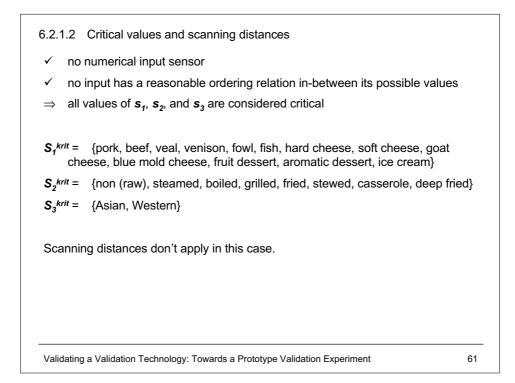
Cheese


- *Hard cheese* calls for a white wine that is rich in content. Or a velvet, low tannin red wine, especially Pinot Noir or Amarone.
- ✓ <u>Soft cheese</u> needs a similar wine that hard cheese, but a little lighter. Beaujolais is also acceptable.
- ✓ **Goat cheese** calls for a dry and fruity white wine.
- ✓ *Blue mold cheese* fits well with any wine other than sweet ones.

Desserts

The switch in taste that comes with the dessert needs a switch in the wine taste as well.

- ✓ Fruit dessert fits well with Riesling that is rich in acid.
- ✓ Aromatic desserts (flavored with cloves, anise, or cinnamon, e.g.) call for a Gewuerztraminer.
- ✓ Ice cream fits best with Prot Wine.


Validating a Validation Technology: Towards a Prototype Validation Experiment

Outp ≻ a	i kind of wine		
outpu	t space $O = \{ o_1, o_2, \dots, o_{24} \}$		
<i>o</i> ₁	Red wine, fruity, low tannin, less	<i>o</i> ₁₂	Beaujolais
	compound	<i>o</i> ₁₃	Rosé, dry, fruity, low tannin
<i>o</i> ₂	Red wine, young, rich of tannin	0 ₁₄	White wine, light, fresh, low acia
03	Red wine, dark, fruity, from the	015	White wine, strong, low tannin
	"new world"	0 ₁₆	White wine, rich in content
<i>o</i> ₄	Red wine, maturely, from the Rhone valley (France)	0 ₁₇	White wine, dry, fruity
05	Red wine, velvet, low tannin	o_{18}	Muscatel
0 ₆	Pinot Noir	0 ₁₉	Gewuerztraminer
0 ₇	Amarone	<i>o</i> ₂₀	Sauvignon Blanc
0 ₈	Burgundy, mature	<i>o</i> ₂₁	Riesling, semi dry
0 ₀	Bordeaux, mature	<i>o</i> ₂₂	Riesling, rich of acid
0 ₁₀	Barolo, mature	<i>o</i> ₂₃	Port wine
o ₁₁	Brunello, mature	0 ₂₄	Any wine besides smooth one

r ₁ <i>Red wine, fruity, low tannin, less compound</i>	\leftarrow		(main ingredient = fowl)
r ₂ <i>Red wine, fruity, low tannin, less compound</i>	\leftarrow		(main ingredient = veal)
\mathbf{r}_3 Red wine, young, rich of tannin	\leftarrow		(main ingredient = pork)
3		\wedge	(preparation = grilled)
$\mathbf{r}_{\mathbf{A}}$ Red wine, young, rich of tannin	\leftarrow		(main ingredient = $pork$)
4		\wedge	(preparation = fried)
r_5 Red wine, young, rich of tannin	\leftarrow	,,	(main ingredient = beef)
y , y , y , y	·	\wedge	(preparation = grilled)
\mathbf{r}_{6} Red wine, young, rich of tannin	\leftarrow		(main ingredient = beef)
		~	(preparation = fried)
\mathbf{r}_7 Red wine, fruity, low tannin, less compound	\leftarrow	,,	(main ingredient = fowl)
$\mathbf{r}_{\mathbf{s}}$ Red wine, fruity, low tannin, less compound			(main ingredient = veal)
r_{91} Barolo, mature			(main ingredient = pork)
9,1		\wedge	(preparation = stewed)
r _{9,2} Barolo, mature	\leftarrow		(main ingredient = beef)
<i>9.2</i> ,	·	\wedge	(preparation = stewed)
$r_{9,3}$ Barolo, mature	\leftarrow		(main ingredient = veal)
9.3	·	\wedge	(preparation = stewed)
r_{94} Barolo, mature	\leftarrow	,,	(main ingredient = venison
9.4 Den ovo, matur e		~	(preparation = stewed)
r _{9.5} Barolo, mature	\leftarrow	~	(main ingredient = fowl)
9,5 2 a. 616, manuf C	ì		(

	Initial Test Cases			
6.2.1	Generating QuEST			
6.2.1.1	Dependency Sets			
 ➤ ar de ➤ as 	e computed for each o_i ule dependency set R_i of pends and sensor dependency set ich o_i depends	R that contains t		
R R R R R R R		$R_{13} = \{r_{16}\}$ $R_{14} = \{r_{15}\}$ $R_{15} = \{r_{17}, r_{18}\}$ $R_{16} = \{r_{25}, r_{29}\}$ $R_{17} = \{r_{34}\}$ $R_{18} = \{r_{21}\}$ $R_{19} = \{r_{22}, r_{37}\}$ $R_{20} = \{r_{23}\}$ $R_{21} = \{r_{24}\}$ $R_{22} = \{r_{36}\}$ $R_{33} = \{r_{38}\}$	$S_{2} = \{s_{1}, s_{2}\}$ $S_{3} = \{s_{1}\}$ $S_{4} = \{s_{1}\}$ $S_{5} = \{s_{1}\}$ $S_{6} = \{s_{1}\}$ $S_{7} = \{s_{1}\}$ $S_{8} = \{s_{1}\}$ $S_{9} = \{s_{1}\}$ $S_{10} = \{s_{1}, s_{2}\}$	$S_{I4} = \{s_1, s_2\}$ $S_{I5} = \{s_1, s_2\}$ $S_{I6} = \{s_1\}$ $S_{I7} = \{s_1\}$ $S_{I8} = \{s_3\}$ $S_{19} = \{s_1, s_3\}$ $S_{20} = \{s_3\}$ $S_{21} = \{s_3\}$

(introduced as "normal va	les of the sensor (input) vari alue": <i>any</i>)	,
$V_{1,1} = S_1^{krit}$	$V_{1,2} = S_2^{krit}$	$V_{1,1} = \{any\}$
$V_{2,1} = S_1^{krit}$	$V_{2,2} = S_2^{krit}$	$V_{2,3} = \{any\}$
$V_{3,1} = S_1^{krit}$	$V_{3,2} = \{any\}$	$V_{3,3} = \{any\}$
$V_{4,1} = S_1^{krit}$ $V_{5,1} = S_1^{krit}$	$V_{4,2} = \{any\}$ $V_{4,2} = \{any\}$	$V_{4,3} = \{any\}$
$V_{5,1} = S_1^{krit}$ $V_{6,1} = S_1^{krit}$	$V_{5,2} = \{any\}$ $V_{6,2} = \{any\}$	$V_{5,3} = \{any\}$ $V_{6,3} = \{any\}$
$V_{6,1} = S_1$ $V_{7,1} = S_1^{krit}$	$V_{6,2} = \{any\}$ $V_{7,2} = \{any\}$	$V_{6,3} = \{any\}$
$V_{8,1}^{7,1} = S_1^{krit}$	$V_{8,2} = \{any\}$	$V_{8,3} = \{any\}$
$V_{9,1} = S_1^{krit}$	$V_{9,2} = \{any\}$	$V_{9,3} = \{any\}$
$V_{10,1} = S_1^{krit}$	$V_{10,2} = S_2^{krit}$	$V_{10,3} = \{any\}$
$V_{11,1}^{10,1} = S_1^{krit}$	$V_{11,2}^{10,2} = S_2^{krit}$	$V_{11,3} = \{any\}$
$V_{12,1}^{1,1} = S_1^{krit}$	$V_{12,2} = \{any\}$	$V_{12,3}^{(1)} = \{any\}$
$V_{13,1} = S_1^{krit}$	$V_{13,2} = S_2^{krit}$	$V_{13,3} = \{any\}$
$V_{14, 1} = S_1^{krit}$	$V_{14,2} = S_2^{krit}$	$V_{14,3} = \{any\}$
$V_{15,1} = S_1^{krit}$	$V_{15,2} = S_2^{krit}$	$V_{15,3} = \{any\}$
$V_{16,1} = S_1^{krit}$	$V_{16,2} = \{any\}$	$V_{16,3} = \{any\}$
	• • •	

	Potential test data $\prod_{j=1}^{3} V_{i,j} = (S_{1}^{krit} \times S_{2}^{krit} \times \{any\}$	$) \cup (S_1^{krit} \times \{any\} \times \{any\}) \cup$	$(\{any\}\times\{any\}\times S_3^{krit})\cup (S_1^{krit})$	\times { <i>any</i> } $\times S_3^{krit}$
	= 13 S ₂ ^{krit} = 8 3*8*1 + 13*1*1 + 1*1*2			145 [.]
	t ₁ pork	non (raw)	any	
	t ₂ pork	steamed	any	
	t ₃ pork	boiled	any	
	t ₄ pork	grilled	any	
	t ₅ pork	fried	any	
	t ₆ pork	stewed	any	
	t ₇ pork	casserole	any	
	t ₈ pork	deep fried	any	
	t ₉ beef	non (raw)	any	
	t_{10} beef	steamed	any	
		•••		
Validati	ng a Validation Technology: To	owards a Prototype Validation	on Experiment	63

6.2.2 Reducing QuEST to ReST

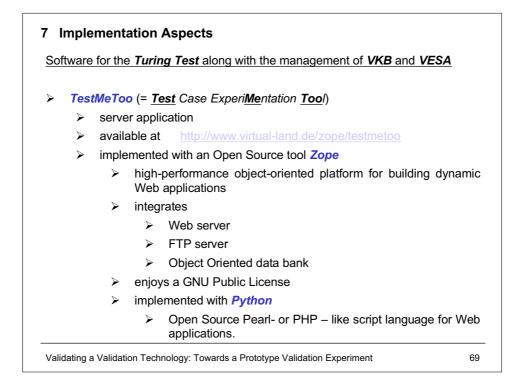
(simplified) criteria

- 1. If a potential test case is semantically more general and subsumed by another one (for instance [pork, any, any] is more general than [pork, any, Asian]), it is removed, i.e. only the more specific one "survives" the reduction procedure.
- 2. If a test case is a meal that doesn't exist at all (for instance "grilled ice cream"), it is removed.
- 3. Meals which exists in only one of the styles Asian or Western (raw fish, e.g.), are only considered in this style, not in the other one.
- 4. Meals, which don't have a system's solution, don't become an element of **ReST**.
- 5. Desserts and Cheese are not distinguished in Asian and Western style.

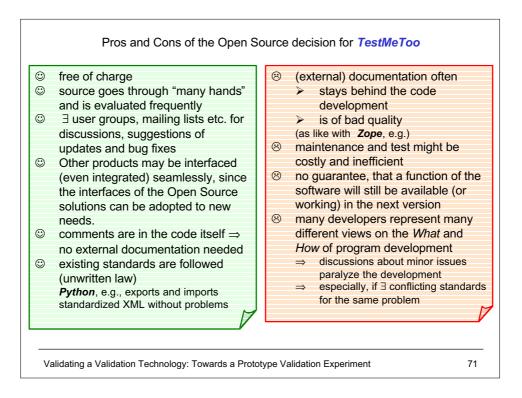
	⇒	R	eST		ReST	= 42		<i>t</i> ₄₂	ice cream	grilled	any
14	venison	grilled	any	<i>t</i> ₂₈	hard cheese	grilled	any	t ₄₁	aromatic dessert	boiled	any
13	venison	boiled	any	<i>t</i> ₂₇	fish	boiled	any	<i>t</i> ₄₀	fruit desert	stewed	any
12	veal	stewed	any	<i>t</i> ₂₆	fish	stewed	any	t ₃₉	blue mold cheese	fried	any
11	veal	fried	any	t ₂₅	fish	fried	any	*38	cheese	S. meu	uny
10	veal	grilled	any	<i>t</i> ₂₄	fish	grilled	any	t ₃₈	blue mold	grilled	anv
9	veal	boiled	any	<i>t</i> ₂₃	fish	boiled	any	<i>t</i> ₃₇	blue mold cheese	boiled	any
8	beef	stewed	any	t ₂₂	fish	stewed	any	<i>t</i> ₃₆	goat cheese	stewed	any
7	beef	fried	any	t ₂₁	fish	fried	any	<i>t</i> ₃₅	goat cheese	fried	any
6	beef	grilled	any	t ₂₀	fowl	grilled	any	t ₃₄	goat cheese	grilled	any
5	beef	boiled	Asian	<i>t</i> ₁₉	fowl	boiled	Asian	<i>t</i> ₃₃	soft cheese	boiled	Asia
4	pork	stewed	any	<i>t</i> ₁₈	fowl	stewed	any	<i>t</i> ₃₂	soft cheese	stewed	any
3	pork	fried	any	<i>t</i> ₁₇	fowl	fried	any	<i>t</i> ₃₁	soft cheese	fried	any
2	pork	grilled	any	<i>t</i> ₁₆	venison	grilled	any	<i>t</i> ₃₀	hard cheese	grilled	any
1	pork	boiled	Asian	t_{15}	venison	boiled	Asian	t_{29}	hard cheese	boiled	Asia

6.3 Application Conditions and Experimentation Plan

Available Resources


- > 3 human experts e_1 , e_2 , e_3
- **ReST** with 42 test cases { *t*₁, ..., *t*₄₂}
- > server application *TestMeToo* to perform the TURING Test (cf. next session)

Desired outcome: Answers to the following questions


- 1. Does a **VKB** contribute to the validation sessions in an increasing degree with an increasing number of validation sessions?
- 2. Does the **VKB** contribute valid knowledge (best rated solutions) in an increasing degree with an increasing number of validation sessions?
- 3. Does the **VKB** skim the human expertise in an increasing degree with an increasing number of validation sessions?
- 4. Do the **VESA**s really model their human origin in an increasing degree with an increasing number of validation sessions?

session #	e ₁	e ₂	e ₃	VESA ₁	VESA ₂	VESA ₃	ReST
1	+	+	+	-	-	-	$ReST_1 = \{ t_1,, t_{28} \}$
2	Ð	+	+	+	-	-	$ReST_2 = \{ t_{15},, t_{42} \}$
3	+	Ð	+	-	+	-	$ReST_3 = \{ t_1,, t_{14}, t_{29},, t_{42} \}$
4	+ + 🕀			$ReST_4 = \{ t_i : t_i \mod 3 \neq 0 \}$			
– take ⊕ take	s not s part	in the part in in sol	sessi the s ving a	essions nd rating			ReST ₄ = { t_i : $t_i \mod 3 \neq 0$ } ing compared with its VESA VESA ₂ ⁱ , and VESA ₃ ⁱ .
− take ⊕ takeThe resuFor a fai	s not s part ult of t r eval	in the part in in sol ⁻ he i - uatio	session the s ving a th sea n of th	essions nd rating ssion are ne usefu	e VKB ⁱ , Iness of	only for be VESA ₁ i VKB, th	ing compared with its VESA , VESA ₂ ¹ , and VESA ₃ ^{1.} e intersection of test data in VKE
− take ⊕ takeThe resuFor a fai	s not s part ult of t r eval ST (El	in the part in in sol ⁱ he i - uatio K = ex	session the s ving a th see th see n of th xterna	essions nd rating ssion are ne usefu	e VKB ⁱ , Iness of	only for be VESA ₁ i VKB, th	ing compared with its VESA VESA ₂ ⁱ , and VESA ₃ ⁱ
 take take The resu For a fai and Res ► EK 	s not s part ult of t r eval ST (El $r = \emptyset$	<i>in the</i> part in in sol ⁱ he i - luatio K = e: ∩ Re	session the s ving a th seson of the xterna ST₁	essions nd rating ssion are ne usefu al knowle	e VKB ⁱ , Iness of edge) ne	<i>vnly for be</i> VESA₁ ⁱ VKB, th eds to b	ing compared with its VESA VESA ₂ ⁱ , and VESA ₃ ⁱ . e intersection of test data in VKE e considered in each session: $ EK_1 = 0$
 take take The resu For a fai and Res ► EK 	s not s part ult of t r eval T (El $T = \emptyset$ $T_2 = \Pi_1$	<i>in the</i> <i>part in</i> <i>in sol</i> he <i>i</i> - luatio K = e: ∩ Re (VKB	sessin the s ving a th set n of th xterna ST_1	essions nd rating ssion are ne usefu al knowle ReST₂	e VKB ⁱ , Iness of edge) ne = Ø	<i>VESA</i> ₁ <i>i</i> <i>VKB</i> , th eds to b	ing compared with its VESA VESA ₂ ⁱ , and VESA ₃ ⁱ . e intersection of test data in VKE e considered in each session: $ EK_1 = 0$

Aft	er the session # <i>i</i> we determine	
۶	the number \mathbf{a}_i of cases from \mathbf{VKB}^{i-1} , which were subject of the ratii it to $ \mathbf{EK}_i $:	ing session and relate A _i := a _i / <i>Ek_i</i>
۶	the number b_i of cases from <i>VKB</i> ^{<i>i</i>-1} , which provided the optimal (b and relate it to $ EK_i $:	best rated) solution B_i := b_i / Ek_i
۶	the number c_i of cases from <i>VKB</i> ^{<i>i</i>-1} , for which a new solution has VKB and relate it to $ EK_i $:	been introduced into $C_i := c_i / Ek_i $
۶	the number d_i of solutions and ratings, which are identical reflection and relate it to the number of required solutions and ratings:	ons of e _{i-1} and VESA _{i-} D _i := d _i / 2* ReST _i
Ar	swers to the vacant questions can expressed as	
1.	Does a VKB contribute to the validation sessions in an increasing	ng degree with an
	increasing number of validation sessions:	$A_4 > A_3 > A_2$?
2.	Does the VKB contribute valid knowledge (best rated solutions)	in an increasing
	degree with an increasing number of validation sessions:	$B_4 > B_3 > B_2$?
3.	Does the VKB skim the human expertise in an increasing degree	e with an increasing
	number of validation sessions:	$C_4 < C_3 < C_2$?
4.	Do the VESAs really model their human origin in an increasing	g aegree with an

۶	high	ly maintained product by Zope Corporation					
۶	com	ombines benefits of both commercial and Open Source software:					
	۶	special license of the Zope Corporation: ZPL (Zope Public License)					
		> products developed within the Zope framework are owned					
		half by the developer					
		half by Zope Corporation					
		Both the developer and <i>Zope</i> Corporation have the right to sell i or to provide it for free.					
		developers sell commercial applications based on the Open Source framework					
		\Rightarrow they have a high interest in providing a stable base					
		⇒ Zope developments are usually moderated					
		\Rightarrow developers follow the given (or discussed) standards					
	\Rightarrow	developers and applicants form a huge validation panel and validate the Open Source Tool for free					

1.	Dependability of intelligent systems is corresponds with the validity of their knowledge base
2.	The only source of domain knowledge are often human experts
3.	Al system validation technologies so far wasted this time consuming, expensive, and not always undependable resource
4.	The concept of VKB is the key to use this resource more efficiently towards dependable systems
5.	While VKB aims at modeling the human experts' collective and most accepted (best rated) knowledge, the VESA concept aims at modeling the human experts itself
6.	At some point (after learning an appropriate model) VESA allows the replacement of this undependable resource human experts
7.	Also validation concepts like VKB and VESA must be a subject of validation.
8.	Experiments to empirically validate the VKB and VESA concept are subject of our actual research at Tokyo Denki University
9.	Open source software is the bases to perform these experiments efficiently and with dependable tools