
Open Source Software



2

Title

Experiences and considerations about open source software
for standard software components in automotive

environments



3

Overview

Experiences
Project

Findings

Considerations
X-by-wire challenges

Relation to Open Source

Conclusion



4

Experiences

Project
Product including hardware and software for automotive prototyping system

Time-triggered operating system services

Detailed Requirements

OSEK/VDX OSEKtime OS 1.0 services

Support for multiple hardware platforms

Product status

Cost efficiency (licensing, know-how acquisition)

Sufficient development support for platform and developer



5

Experiences

Solution
Open source Linux Kernel

Open source RTAI real-time extension

Extension of RTAI in project

Time-driven dispatching service

Integration of time table interface

OSEKtime OS service API

Console support

Error/panic handling

/proc file system support (e.g. maximum

measured execution time of tasks)
Hardware

RTAI

Linux OSEKtime

Dev Sys RT Appl.



6

Experiences

Platforms
Industry PC

COTS 1,5 GHz Standard PC with PCI interface and hard disk in 19” rack

IP860

COTS embedded MPC860 controller

ARM9

Embedded ARM9 controller in Altera Excalibur designed by DECOMSYS



7

Experiences

Result Preview
All three platforms finally reached product status, but …

Detailed Observations
Categorized by

Development tools

Runtime system

Support

Developer’s rating

Documentation



8

Experiences

Development Tools
Gcc compiler and linker, make, cvs

Found high tool quality for all platforms

Rating by development team on basis of test application compilation

One commercial compiler reached equivalent status, others were significantly worse

No problem found in gcc code generation, linking, make and cvs for all platforms



9

Experiences

Runtime System
Linux and RTAI

Problems found in each platform port of Linux and RTAI

All platforms: complex dependencies between versions

PC: interference between power management and RTAI

IP860: kernel service insmod faulty, problems with stack allocation in modules

ARM9: multiple problems



10

Experiences

Support
Tools

Well organized and reliable

PC platform

Open mailing lists, FAQs

Mostly competent answers, but no support guaranty

Took longer than planned to bring system to product status

IP860 and ARM

Open mailing lists, FAQs

Additional porting work was necessary

Contracting of consulting companies for porting work and support

Fast and reliable support by consulting companies



11

Experiences

Documentation
Tools

Documentation available

Quality OK (user manual plus e.g. ANSI C standard)

Runtime Systems

Documentation available for all platforms

Quality not sufficient

Problem softened by availability of source code



12

Experiences

Developer’s Rating
Range [++,+,~,-,--]

Would you use the compiler, linker, cvs in a safety related project?

Rating +

Would you use Linux in a safety related project?

Rating ~

Would you use RTAI in a safety related project?

Rating --



13

Experiences

Condensation of Experiences
General

Tools have much higher standard than run time systems

Although support available by community, pay company for support

For more advanced prototyping systems we switch to commercial open source

operating system

Comments

Available source code helps to understand a problem (not necessarily to solve it)

Available source code sometimes helps to solve problems fast in time critical projects

gcc has a steering committee that controls development of compiler (IBM, RedHat,..)

This may be a key factor for high quality level



14

Part II

Considerations
X-by-wire challenges

Relations to open source

Conclusion



15

Considerations

Future Automotive by-Wire Systems
High Performance Control Systems and high bandwidth backbones

Chassis control

Driver assistance with intelligent sensing systems

Architecture clean-up

Classic X-By-Wire

Rear/full electronic braking

Steering influence

Full steering

Scope: starting from 2008



16

Considerations

X-By-Wire Challenges from DECOMSYS Perspective
Integrated Design and Configuration Tools

Standard software components

System Reliability

System Safety



17

Considerations

Integrated Design and Configuration Tools
System complexity cannot be handled without tools

E.g. > 1000 signals in a network

First challenge is the seamless integration of development tools

No manual preparation of design data

Challenge is not how to do it in general, but how exactly for automotive customers

Tool supported collaborative design process between integrator and supplier

Open source idea can be interesting for tools

At least open internal interfaces are in consideration for DECOMSYS tools

Certification of tools is an open issue



18

Considerations

Standard Software Components
Operating system, communication layers, transport services, network management

Standard software components are not an USP of a car

All manufacturers and supplier can use the same standard

Standard yet has to be found

Benefits

Enable software reuse

Shorten development cycles

Create higher flexibility (e.g.: function migration)

Test deepness increases with every system that uses code base

Candidate for open software solution



19

Considerations

Open Standard Software Components
Partly industry practise

Many components are delivered in source code with make and configuration

environment

Different opinions

Open software for known benefits

Binary components for some liability issues



20

Considerations

Industry Activities for Standard Software Components
In past numerous parallel activities

HIS

OSEK

ASAM

New AUTOSAR Development Group

Focus on the standardization of automotive software components

Almost all major car manufacturer participate

Follows idea of open source reference implementation for components!



21

Considerations

One open Implementation of Standard Software Components
One implementation of code base

Advantages

Developers know-how focuses

Effort for conformance testing can be reduced

Generic certification (or preparation for certification) of core code base

Disadvantage

Decreases market dynamics

Business model difficult

Alternatively

One reference implementation

Strict conformance tests



22

Considerations

One open Implementation of Standard Software Components
Requires clear responsibilities and processes for

Software development (all elements of V-model)

Change management

Configuration management

Conformance testing

Still required since platform adaptations have to be checked



23

Considerations

System Reliability Aspects
Software layers for fault tolerant communication and task execution

Standardization is prerequisite

But solutions depend strongly on fault models for underlying hardware/software which

can vary (e.g.: cost factor of physical layers)

Advantages would be

Test deepness

Increasing experience

Disadvantages would be

Standard would have to cover many situations (probably high complexity)

Standardized open source solutions may not be suitable

Open design templates may help to reduce number of problems



24

Considerations

System Safety
The “automotive way” to build safe systems is not yet defined

Although it will not be very different to other industries (maybe cheaper)

Software architectures for safety-relevant systems

E.g.: software solution for car state management (German:

Fahrzeugzustandsmanagement)

Solutions tend to be very system specific

Standardized open source solutions may be unsuitable

Open design templates may help to reduce number of problems

E.g., templates for distributed synchronized state machines or atomic broadcast



25

Considerations

Conclusion
Potential use of open software idea for

Standard software components

Design templates for fault tolerance and safety functions

Only under a strict regime of an organization responsible for

Specifications

Conformance specification and testing

Change management

Configuration management

Certification

Support

Documentation



Thank you for your attention!

DECOMSYS 2004 for 45th IFIP Workshop


