
Open Source and Critical Systems:
Some Challenges and Lessons Learnt

Jean Arlat

45th IFIP WG 10.4 Meeting — March 6-7, 2004 — Moorea, French Polynesia



RIS
Network on Dependability

Engineering

� Working Group on OSS and Dependability
(RIS members + participants from Industry ESA, SNCF,
and Academia LSV, INRETS, IRISA)

� Publication of a book
Hermes Science Publications
(in French)                     -->

<http://www.ris.prd.fr>



Agenda

� Context

� Background

� Open Source Software and Dependability Issues

� Examples

� RTEMS

� Linux

� Concluding Remarks



Evolution of Critical Systems

� Ubiquity of Computerized Systems Including in Critical
Applications

� Cost Issues Become More and More Stringent
� Favor Reuse wrt Custom Solutions and Developments

� Systems are open entities and need to interact
� Use of Standard Interfaces

���� Security Issues are Important

� Increase Use of Software
� 48 kb on SPOTA1 in 1980 ���� 1,2 Mo on Mars Express in 2003

� 25 kb on A300B en 1974 ���� 64 Mo on A380 en 2005

� Certification requirements extend to an increasingly larger
set of industrial domains



How to Cope with Software?

� Insights gained by Industrial partners within RIS:
COTS Components do not provide a fully satisfactory
solution for critical systems

� Nevertheless, the principle of using pre-developed software
components is an appealing approach

-> Open Source Software: Threat or Opportunity ?



Background

� Protection of users wrt Software vendors
� 1984, Richard Stallman’s GNU manifeto
� 1985, Free Software Foundation
� 1990, Maturité du projet GNU/Linux
� 1990,#“Open Source”, terme déposé par l’OSI
� 2000, Political and Economical Recognition

� Principle: Force to freedom (with a license)
1. Freedom of use
2. Freedom of change
3. Freedom of (re)-diffusion
4. Freedom of access to source code

� Organization
� Structuring of OSS projects very similar to industrial projects
� Financing of the projects achieved by foundations, grants, industrial partners
� Recognition of developer’s skill by some form of hierarchy



OSS and Critical Systems

Heresy or Tomorrow’s Reality?



Insights Gained from Using COTS

� Requirements for Critical
systems
� Detailed knowledge
� Adaptability of the COTS to

the system
� Availability of certification

documents
� Availability of the COTS for

a 5-10 year period
� Maintenance over a 10-20 year

period
�  Compliance wrt standards
� Cost and modalities of the

license

� Typical Concerns
� Cost  for COTS support might not

be interesting for the provider
� cost of the support

� Lack of Knowledge about the COTS
� cost the certification documents

� Diverging interests between the
user and the provider
� cost for freezing the COTS

� Stability of the solution overtime
� cost of maintenance

� For small number of units
� cost of licenses becomes significative

� Proprietary clauses might constitute
a blocking point
� cost of negotiating licenses



Risk Management

� License
� Strategic problem
� Industry is used to cope with such an

issue

� Component Failure
� The liability of the provider is limited.
� Risk of propagating errors of the

component to the whole system is real
and has to be handled by the
Integrator

� The integrator has no/little detailed
knowledge about the component

� The confidence relationship between
the Provider and the Integrator is not
sufficient

� Discontinuity of Provider or
component

� License
� Freedom of use
� GPL introduces new risks

(contamination)

� Component Failure
� Integrator is only responsible
� Risk of propagating errors of the

component to the whole system has to
be handled by the Integrator.

� The Integrator has access to the
source code

� The component can be maintained
by the Integrator

COTS OSS



Impact of Maintenance

� Critical systems feature very long operational life
� Satellites: 15 years

� Command/control for nuclear propulsion  in submarines: 40 years

� Maintenance policy is accounted for as part of design of the
system
� Architectural principles that minimise the impact of changes between successive

releases/versions

� Favor interface standards (e.g., POSIX, …)

� Encapsulation mechanisms to minimize the impact of evolutions

� Long term maintenance has to account for the  risk of
loosing the Provider
� Source code availability is often necessary



Potential Benefits from Using OSS

� Is the effort necessary to comprehend the technology of an OSS

component worth, so that it allows for a better management

of the life-cycle of a critical system ?

� Several scenarios can be considered for the various phases:

1. Acquisition of the technology of the OSS component

2. Effort to adapt the OSSS to the system

3. Elaboration of the documents for certification

4. Maintenance in operational life

5. Long term maintenance support for the OSS

6. Management of the major evolutions of the system



Scenarios for Using an OSS Component

Acquisition of technology

Certification by the

Integrator

No maintenance

IntegratorIntegratorIntegratorIntegratorIntegratorProviderScenario 4

�Certification

�Maintenance

Acquisition of technology

Certification by the

Integrator

No maintenance

ProviderProviderProviderIntegratorIntegratorProviderScenario 3

�Certification

�No

maintenance

Investment into a

maitenance team for OSS

In-house maintenance when

the component is critical

(e.g, OS)

Trend in space

IntegratorIntegratorIntegratorNot

necessary

ProviderProviderScenario 2

�No

certification

�Maintenance

No investment

Risk is supported

Case of space industry

today

ProviderSource codeProviderNot

necessary

ProviderNot necessaryScenario 1

�No

certification

�No

maintenance

SummaryMajor

evolutions

Long term

maintenance

Maintenance

in operation

Certification

documents

Adaptation

to the

system

Acquisition of

technology



Main Features
� Access to the Source Code

� Cope with risks of evolution of the component

� Disappearance of Provider

� Better prepared to use the source code in case of a problem (wrt to case of
COTS)

� Support by an OSS Technology Provider
� Same service and relationship as in the case of COTS

� The support provided is often of better quality, since this is this facet of
expertise wrt the OSS that is the basic service provided

� Acquisition of the Technology
� Acquisition of a detailed knowledge about the OSS can be long and costly

(several p.y)

� The investment is heavy (both short and long term) as it is necessary to maintain
a competent team  all along the system life-cycle



Dependability of OSS

� An architectural platform to host the component is necessary:

� The OSS is suspected (in the sense of its failure modes)

� Functionalities might be over-abundant or not fully suitable

� Characterization of failure modes

� Use of wrappers

� Partitioning into zones with different levels of criticallity

� Support openness of critical systems to increased interactions (interoperability functions)

� Security

�  Transparency induced by access to the source code makes a significant difference?

� Openness to various contributors might be a threat?



Characterization of Failure Modes
CORBA Event Service

Client-side exceptions (bit-flip experiments)

Rack of x86-based machines running Linux kernel version 2.4.18

0

10

20

30

40

50

60

70

80

90

100

ORBacus Notify ORBacus Event omniNotify TAO CosEvent MICO CosEvent

NoObservation

COMM_FAILURE

ServiceFailure

* * *

*  OSS Targets



Characterization of Failure Modes

Detected Failure: CORBA Exception
Non Detected

Failure

CORBA Name Service
(Bit flips)

P
er

ce
nt

ag
e 

of
 O

cc
ur

re
nc

e 
pe

r 
T

ar
ge

t



Bit Flip - Detailed Analysis



Certification

� Certification corresponds to the acceptance by a separate entity
of the proof that a dependability level has been achieved

� Certification has a strong impact on system design

� Dependability and “certifiability” are not explicitly considered by OSS
���� Reluctance of Industry to adopt OSS solutions
� Responsibility of the Industrial Integrator

� Analyse of the certification processes of various domains in order to
identify the methods and efforts necessary to allow the systems to be
certifiable

���� OSS has to demonstrate a significant competitive edge
   for the system, without compromising the dependability



Classification of Criticallity
� Classification of criticallity is rather consistent

among various industrial domains
� DAL (Development Assurance Level) for Avionics
� SIL (Safety Integrity Level) fore Railway
� …

AcatastrophicA-BSIL 3-4Impact
on human lifes

B and CcriticalC-DSIL 1-2Impact
on system

//ESIL 0No impact

NuclearSpaceAvionicsRailwayClass



Impact of Assurance Levels
for Civil Aviation

� Top-Down analysis up to any equipment contributing to safety

� Regulation Authority has elaborated reference documents:

� Document ARP#4754 (system level)

� Document DO-178B, critical software (e.g., flight control)

� Various categories of software components (from A to E) are identified

according to the harm that can be caused by the failure conditions

at system level, in which the software can potentially contribute

(ARPA4754)



Architectural Solutions
According criticallity

Degree of redundancy (generic principle)Classification
of failure
conditions

Software DAL (Development Assurance Level)

EEENo impact
on safety

DDDMinor

DDCMajor

DCBDangerous

CBACatastrophic

210

If a critical function prone to lead to a catastrophic failure  of the system is:
• not redunded —> it is considered as a category A software
• ”duplicated” (d°1) —> Each replica/version can then be classified as category B
• “triplicated” (d°2) —> Each replica/version can then be classified as category C



Certification, Dependability
and Open Source

� A Critical System can be designed using redunded elements of lower

critality levels provided that the redundancies are managed according

to the safety requirements at system level.

� Communication protocols or real time OSs are potential candidates

for levels B or C.

 ���� Provision of redundancy allows for intregrating OSS

    (e.g., levels C or D)

� The use of OSS for A (or B) level(s) corresponds to a specific process

in which the software has been developed by the industrial and certified

at such level(s).

���� Specific development of OSS



Examples

� Space
� Avionics



Generic Layered Architectural Design (1)

 Integration of of-the-shelf components (COTS or OSS)
relies usually on a three layer architecture (bottom-up):

� Level 1 : Execution environment abstracting the hardware
and basic software resources

� Level 2 : Standardized or proprietary services supporting
the execution of applications

� Level 3 : High-level host platform for supporting applications



Integration of off-the-shelf solutions

� Use of COTS or OSS mainly at level 1
� Real Time executives, communications stacks, graphical library, etc.

� Level 2 usually (in embedded systems) features architectural solutions
to the use of COTS or OSS in order to master their integration,
assuming that their design cannot be sufficiently masterred
� Fault containment and fault tolerance mechanisms

✦ Partitioning
✦ Wrapping

� Enforce independency between applications and restrict the dependency of applications
wrt the lower layers (including hardware)

� Level 3 is application domain dependent
� In practice, specific solutions exist for each domain

� Environments for development and production constitute another
emerging domain where OSS solutions are succesfully introduced
(compilers, etc.)



Conceptual Framework for Wrapping
Microkernel-based Real Time Systems

 
 

Target  
Software  

Component 

WFA2 WFAn WFA1 
Formula+Actions FA1 
Formula+Actions FA2 

... 
Formula+Actions FAn 

(temporal logic) 
COMPILATION 

Error signal 

... 

Observation 
(data, ticks, events) 

Specification 

TSC 

Control 
(actions)  

Runtime checker 

Wrappers 

The model is a set ofThe model is a set of
formulas in temporal logicformulas in temporal logic
including actionsincluding actions

Automatic generation of theAutomatic generation of the
wrappers codewrappers code

The wrappers are executedThe wrappers are executed
concurrently on a virtual machineconcurrently on a virtual machine

The TSC must deliver data items,The TSC must deliver data items,
clock ticks and events to theclock ticks and events to the
wrapperswrappers

Fault Tolerance 
  • Detection 
   • Recovery
Caracterization 
   • Synchronization
   • Injection
   • Observation 



Space Domain

Integration of RTEMS



Context

� New generation of 32-bit processors
� Developments in C
� Necessity to identify a suitable “real-time” software executive

� On-board system
� Difficulty of maintenance -> autonomy to provide operational
� Increasing economical and calendar constraints
� Trends toward standardization (interfaces et services)

� Three solutions (potentially)
� COTS

✦ Already been conducted on VxWorks: Columbus,…

� OSS
✦ Encouraged by ESA

� Development of a specific solution -> expertise required hardly cost-effective
in space domain



Why RTEMS?

� ESA Incentive

� Flexibility in the configuration (componentized
µkernel)

� Flexibility in the elaboration and implementation of
a comprehensive policy for maintenance, deployment
and durability
� Source code is available and can be freely modified

� Normalisation at European level to improve quality



Support and Environment

� Industry is willing to maintain the product
� Elaboration of aA“RTEMS process”

� Execution platform (based upon ERC32SC processor)
� Configuration management independently of user projects
� Watch of the «#public#» version
� Management of modification request from the users

� Effort for documenting the product in conformance with
standard rules of clients
� Creation of a validation plan
� Implementation of traceability support

� Environnement de développement
� Use of GNU tools available for RTEMS
� Use of specific means for real time tests



Linux: A Candidate
for Embeddeed Avionics?



Context

� Questions about Linux… Is it possible that Linux be:
� Integrated  into non critical avionics equipments?
� Suitable for avionics requirements
� Included into a DO178B-based certification process

� Properties required
� Partitioning: Memory, Timing, I/O

� ARINC A653 Interface Standard -> Loss of interoperability
-> Need for developing specific tools (reuse is difficult)

=> Use Linux as a platform for hosting avionics applications
ensuring interoperability and partitioning



Prototype Platform for “Embedded Linux”

Serveurs structure d ’accueil
PROT

ACEMIHM

BITE GEST Routeur
P618

Services structure d ’accueil

Maquette application
#1

Maquette application
 #2

Arinc 429
Discrets E/S

Intégration
SUN/SOLARIS

Banc TEST

VME

TCP/IP

ETHERNET

PC/LINUX
serveur de fichiers

PC/LINUX
poste développement

 boot - BSP - drivers

Services

POSIX

BSD

SysV

Console

Calculateur avec µP x86

N1

N2

N3



Concluding Remarks

� As is already the case for many computer sectors, industry
concerned with critical systems is positively considering using
OSS solutions (several experiments are underway)

� The main advantage is accessibility to the source code:
� Mandatory for Certification
� Less dependency with respect to provider

� Some “open” issues:
� Security?
� Licensing?
� Overall cost?
� How to capitalize insights among various industrial sectors?
� How to contribute to the “Open Development Movement”?
� …


