
Analysis of Security
Vulnerabilities

R. Iyer, Z Kalbarczyk, J. Xu, S. Chen

Center for Reliable and High-PerformanceComputing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

http://www.crhc.uiuc.edu/DEPEND

Approach

• Analyze data on security attacks to:

– identify current vulnerabilities and to classify the attacks according
to attack causes

– understand potential inconsistencies in application/system
specifications resulting in security vulnerabilities of an actual
application/system implementation

• Generate measurement-based security attacks models
depicting the attack process

• Investigate and propose software (e.g., compiler-based)
and hardware (e.g., processor embedded) intrusion
detection/prevention techniques

A Finite State Machine Methodology
for Analyzing Security Vulnerabilities

• Used the Bugtraq database and application source code to
analyze reported vulnerabilities.

• Developed finite state machine (FSM) models to depict the
vulnerabilities and associated exploits.

• Only three primitive FSMs (pFSM) are required to describe
at least 22% (out of 6000) of Bugtraq vulnerabilities.

• Discovered a new remotely exploitable heap overflow
vulnerability, which is now published in Bugtraq.

Breakdown of Vulnerabilities (Bugtraq)

Configuration Error
5%

Design Error
18%

Input Validation Error
23%

Boundary Condition
Error
21%

1%
Failure to Handle

Exceptional Conditions
11%

Access Validation Error
10%

3% 2%

Unknown
6%

Access Validation Error

Atomicity Error
Boundary Condition Error

Configuration Error

Design Error
Environment Error

Failure to Handle Exceptional Conditions

Input Validation Error
Origin Validation Error

Race Condition Error

Serialization Error
Unknown

•Access Validation Error : an operation on an object outside its access domain.
•Atomicity Error : code terminated with data only partially modified as part of a defined operation.
•Boundary Condition Error : an overflow of a static -sized data structure: a classic buffer overflow condition.
•Configuration Error : a system utility installed with incorrect setup parameters.
•Environment Error : an interaction in a specific environment between functionally correct modules.
•Failure to Handle Exceptional Conditions : system failure to handle an exceptional condition generated by a functional module, device, or
user input.
•Input Validation Error : failure to recognize syntactically incorrect input.
•Race Condition Error : an error during a timing window between two operations.
•Serialization Error : inadequate or improper serialization of operations.
•Design Error and, Origin Validation Error : Not defined.

Bugtraq database included 5925 reports on
software related vulnerabilities
(as of Nov.30 2002)

Vulnerability Distributions Across
Operating Systems

• Locations of observed vulnerabilities

– Majority of the vulnerabilities occurred in the executing
applications rather than in libraries or the OS kernels:

– 78.9% for RedHat Linux (all versions), 77.3% for Windows 2000,
and 90.5% for Solaris 2.6, i.e., between 10% and 22% of
reported vulnerabilities are present in the underlying operating
systems

 Total Number of
Vulnerabilities

Access
Validation
Error

Boundary
Condition
Error

Failure to Handle
Exceptional
Conditions

Input
Validation
Error

Design
Error

RedHat
Linux

822 10% 27% 7% 22% 15%

Windows 1856 9% 23% 15% 19% 23%
Solaris 453 10% 35% 5% 18% 11%

Common Vulnerabilities on Multiple
Operating Systems

RedHat Only
19.64%

Windows Only
59.30%

Solaris Only
9.21%

RedHat-Solaris
3.88%

Windows-Solaris
1.70%

RedHat-Windows
4.64%

RedHat-Windows-Solaris
1.63%

Abbreviations:
IE – Internet Explorer; IIS – Internet Information Services; RedHat – RedHat Linux

Access Validation Errors
Apache, man
Boundary Condition Errors
Man, FTPd, openSSH, RPM,
Sendmail, TCPDUMP
Design Errors
Apache
Failure to Handle Exceptional
Conditions
Apache, Sendmail, IPTables,
openSSH
Input Validation Errors
Sendmail, Libc, TELNETd, RPC,
Netscape

Access Validation Errors
Apache, man
Boundary Condition Errors
Man, FTPd, openSSH, RPM,
Sendmail, TCPDUMP
Design Errors
Apache
Failure to Handle Exceptional
Conditions
Apache, Sendmail, IPTables,
openSSH
Input Validation Errors
Sendmail, Libc, TELNETd, RPC,
Netscape

Access Validation Errors
Netscape
Boundary Condition Errors
Netscape
Design Errors
Netscape
Failure to Handle Exceptional
Conditions
Netscape
Input Validation Errors
Netscape

Boundary Condition Errors
Apache, Netscape, Realplayer
Input Validation Errors
Apache

Access Validation Errors
Adobe, Apache, openSSH
Boundary Condition Errors
Apache, TELNETd, openSSH
Design Errors
openSSH
Input Validation Errors
Apache, openSSH

Input Validation Errors
Netscape

Access Validation Errors
Sendmail, RPC
Boundary Condition Errors
rlogin, PRC
Design Errors
RPC
Failure to Handle Exceptional Conditions
RPC
Input Validation Errors
Netscape

Access Validation Errors
Office, IE,IIS,SQL Server
Boundary Condition Errors
Adobe, AOL Messenger, IE, IIS, Office,
SQL Server, TELNETd, Realplayer
Design Errors
Adobe, AOL Messenger, IE, IIS, Office,
Apache, Netscape
Failure to Handle Exceptional Conditions
AOL Messenger, IE, IIS, Office, TELNETd
Input Validation Errors
AOL Messenger, Apache, IE, IIS, Office,
SQL Server, Netscape

Common Vulnerabilities on Multiple
Operating Systems

• Solaris is least vulnerable: Solaris applications and the
applications that overlap between
Solaris and other platforms contribute the smallest
fraction

• RedHat Linux is second in terms of both its own
contribution (OS and applications) and the overlapping
applications.

• Windows (and Windows-exclusive applications)
contributes nearly 60% of the reported vulnerabilities.

– The overlap percentage between Windows and other
applications is also the largest.

Observations from Vulnerability Analysis

• Exploiting a vulnerability involves multiple vulnerable
operations on several objects.

• Exploits must pass through multiple elementary
activities, each providing an opportunity for performing
a security check.

• For each elementary activity, the vulnerability data and
corresponding code inspections allow us to define a
predicate, which if violated, naturally results in a
security vulnerability.

Primitive FSM

• We define Primitive FSM (pFSM) to depict an elementary
activity, which specifies a predicate (SPEC) that should be
guaranteed in order to ensure security.

IM
PL

_A
C

C
E

PT

IMPL_REJECT

SPEC_REJECT

SPEC_ACCEPT

SPEC Check
 State

Reject State

Accept State

Op 1: Write an integer to an array location

Op 2: Manipulate the function pointer

Elementary activity 1 Elementary activity 2

Elementary activity 3

Sendmail Debugging Function Signed
Integer Overflow (Bugtraq #3163)

A function pointer can be overwritten

Attacker’s malicious code is executed

Elementary Activity 1 of Sendmail
Vulnerability

?

pFSM
1

Elementary Activity 1: get user input
 Get strings str_x and str_i, convert them to integers x and i

(integer represented by str_x
) > 231

(integer represented

by str_x) ≤ 2 31
Convert str_x and str_i
to integers x and i

Get str_x and str_i

Elementary Activity 2 of Sendmail
Vulnerability

pFSM2

Elementary Activity 2: assign debug level

Convert str_x and str_i
to integers x and i

x<0 or x>100

0≤x ≤100

x >100

x ≤100

tTvect[x]=i

A function pointer
(psetuid) is corrupted

Elementary Activity 3 of Sendmail
Vulnerability

?

pFSM
3

Elementary Activity 3:
manipulation of function pointer psetuid A function pointer

(psetuid) is corrupted

starting
sendmail
program

Load psetuid to
the memory psetuid is changed

psetuid is unchanged

Execute the code
referred by psetuid

Execute malicious code

Summarizing the FSM Model of the
Sendmail Vulnerability

Operation 1:
Write integer i to tTvect[x]

addr_setuid unchanged

tTvect[x]=i

Operation 2:
Manipulate the function pointer

addr_setuid changed

Execute code referred by
addr_setuid

convert str_i and str_x
to integer i and x

(integer represented by str_x) > 231

x ≤ 100

x > 100

?

Execute MCode

get text strings
 str_x and str_i

?

x < 0 or x > 100

0 ≤ x ≤ 100

Function pointer is corrupted

Load the function pointer

(integer represented

by str_x) ≤ 2 31

pFSM1

pFSM2

pFSM3

NULL HTTPD Heap Overflow
Vulnerabilities (Bugtraq #5774, #6255)

Size
(Po
stD
ata

)<len
gth(in

put)

−♦−

−♦−

contentLen<0

contentLen>=0

length(input) <= Size(PostData)

Op 1: Read user input from a
socket into a heap buffer

get (contentLen, input)

Calloc PostData[1024+contentLen] Copy input from the socket

 B->fd=A
B->bk=C

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode

Buffer overflow

When buf is freed, execute
B->fd->bk = B->bkB->fd and B->bk

unchanged

A function pointer is corrupted

addr_free changed ♦-

addr_free
unchanged ♦-

Execute addr_free when
function free is called

Attacker’s malicious code is executed

Calloc is called

-♦ Load addr_free
to the memory during
program initialization

pFSM1

pFSM2

pFSM3

pFSM4

Op 2: Allocate and
free the buffer

Op 3: Manipulate
the function pointer

length(input)>Size(Pos
tDat

a)

contentLen<0

contentLen>=0

length(input) <= Size(PostData)

get (contentLen, input)
contentLen is an integer,
input: string to be read from a socket

Calloc PostData[1024+contentLen]

Copy input from the socket to
PostData by recv() call

?

pFSM1

pFSM2

Operation 1 of NULL HTTPD: Read postdata from
socket to an allocated buffer PostData

0: Get contentLen //Can be negative
1: PostData = calloc(contentLen +1024,
 sizeof(char));x=0; rc=0;
2: pPostData= PostData;
3: do {
4: rc=recv(sock, pPostData, 1024, 0);
5: if (rc==-1) {
6: closeconnect(sid,1);
7: return;
8: }
9: pPostData+=rc;
10: x+=rc;
11: }while ((rc==1024) || (x<contentLen));

Modeled Vulnerabilities

• Signed Integer Overflow

• Heap Overflow

• Stack Overflow

• Format String Vulnerabilities

• File Race Conditions

• Some Input Validation Vulnerabilities

Common pFSM Types

• Object Type Check. to verify whether the input object is
of the type that the operation is defined on.

• Content and Attribute Check. to verify whether the
contents and the attributes of the object meet the
security guarantee.

• Reference Consistency Check. to verify whether the
binding between an object and its reference is preserved
from the time when the object is checked to the time
when the operation is applied on the object.

Common pFSM Types (cont.)

pFSM2pFSM1rpc.statd format string vulnerability

pFSM2pFSM1GHTTPD Buffer overflow on Stack

pFSM2pFSM1Xterm File Race Condition

pFSM1IIS Filename Decoding Vulnerability

pFSM1pFSM2Rwall File Corruption

pFSM3

pFSM4

pFSM1

pFSM2

NULL HTTPD Heap Overflow

pFSM3pFSM2pFSM1Sendmail Signed Integer Overflow

Reference
Consistency
check

Content and
Attribute
Check

Object Type
check

 Type of pFSM

Example

Vulnerabilities

Lessons Learned

• Conclusions
– Extracted common characteristics of security vulnerabilities

– Based on the characteristics, developed an FSM methodology to
model vulnerabilities.

– Only three pFSM types were required. Force rigorous reasoning.
Indicate opportunities of security check.

• Future Directions
– Automatically specify certain predicates in the FSMs

– Runtime checks or formal proofs of the predicates.

Motivation

• 60% of all CERT security
advisories (1999-2002)
– Buffer overflow, format string,

double free, integer overflow

• Observation:
– Customized solutions exist for

some subclasses
vulnerabilities

– Generic techniques needed for
masking broad-range of
vulnerabilities

buffer overflow format string

double free integer overflow

others

How Attacks Work?

• Two conditions for a successful attack
– Injecting malicious code/data at address m in app. memory

– Changing control data at address p to point to m

struct message {
 char buf[96];
 int (*fptr)(char*);
};
struct message msg;

int get_message(…){

 msg.fptr = printf;
 gets(msg.buf);
 msg.fptr(msg.buf);
}

m

p

msg.buf[96]

msg.fptr = printf

…

malicious code

malicious code

msg.fptr = m

m

Transparent Runtime Randomization

• Key to a successful attack
– Correctly determine the runtime values of m or p

• Why runtime values of m or p can be determined?
– Memory layout is fixed and addresses are highly predictable
– Lack of diversity in modern systems

• Introduce diversity into a system
– Dynamically randomize the memory layout of a program
– Each invocation has a different layout
– Defeating attacks

• Breaks memory layout assumption
• Make it hard to determine m/p

• Implementation – transparent to application
– Modify dynamic program loader; develop programmable HW
– Position independent regions: stack, heap, shared libraries
– Position dependent regions: global offset table (GOT)

Position Independent Regions

• Different sections at
different fixed locations

• Change the loader
– Part of the process

initialization modules

– Random offset is applied to
different regions

use code

Kernel space

0xC0000000

0xFFFFFFFF

0x08048000

static data

bss

shared libraries

0x40000000 ± Rand

0xBFFFFFFC - Randuser stack

user heap End_of_bss + Rand

Position Dependent Region

 Program code
 call plt_printf

 PLT
plt_printf:
 jmp *got_printf

 GOT
got_printf:
 addr of printf()

co
de

da
ta

he
ap

 Program code
 call plt_printf

 GOT
got_printf:
 addr of printf()

 Relocated GOT
new_got_printf:
 addr of printf()

 Changed PLT
plt_printf:
jmp *new_got_printf

Reliability and Security Engine (RSE)

Reliability & Security EngineReliability & Security Engine

Fetch Decode Execute MEM Write
Back

Fetch Decode Execute MEM Write
Back

OS Liveness
Data Range

Check
Buffer

Overflow
Instruction

queue

Heart
Beat

Instruction
Check

� Hardware framework to support checking
modules

� Can be integrated with the processor or
implemented as an FPGA-based engine

� Hardware execution blocks
– homogenous
– contain embedded hardware modules for

• error detection and recovery

� Interface with the application through
CHECK instructions

� Interface with the external system
through generic I/O interface

� Modules are dynamically loadable
and run-time re-configurable

