
Towards Threat, Attack, and Vulnerability
Taxonomies

Dennis Hollingworth

Network Associates laboratories

dennis_hollingworth@nai.com

Context

Measuring Assurance in Cyberspace (seedling call)

� Areas of interest included (but not limited to) the following:

1. Concepts and terminology to succinctly express IA domain issues;

2. Threat, attack and vulnerability taxonomies;

3. Security models and models of attacker intent, objectives, and strategies;

4. Work factor metrics, survivability metrics, operational security metrics,
cryptographic protocol metrics;

5. Methods for testing and validating protection mechanisms; and

6. Security and survivability requirements specifications.

Overview

� Premise: Models of attacker intent, objectives, and strategies will
depend, at least in part, on useful threat, attack, and vulnerability
taxonomies to parameterize those models.

� Focus: Taxonomies that relate to the needs of security model
developers and provide a more useful information tool for security
analysts.

� Scope: Modest seedling effort to explore…

– Unifying/bridging taxonomy concepts, content, and organizational structure

– Tools to support the rapid development of specialized or focused taxonomies

But…with metrics/measurability emphasis

Very Hard Problem Area

� IT’S ALWAYS BEEN HARD (INTRACTABLE???)

– Characterizing security events in a potentially measurable way

– Dealing with intangibles such as software production methodology

– Going beyond the Framework Specification stages to populating
those frameworks

– Identifying useful metrics and associated estimation or
measurement techniques that are somewhat repeatable

– Covering threat, attack, & vulnerability space such that error factors
don’t dominate measurability

� Security metrics & measures have been sought since mid 70s

General Taxonomy Characteristics

Anyone can specify a taxonomy…“Is it useful for what you want to do?”

Not an arbitrary assignment of information to categories:

� Mutually exclusive - classifying in one category excludes all others because
categories do not overlap,

� Exhaustive - taken together, the categories include all possibilities,

� Unambiguous - clear and precise so that classification is not uncertain,
regardless of who is classifying,

� Repeatable - repeated applications result in the same classification,
regardless of who is classifying,

� Accepted - logical and intuitive so that they could become generally
approved,

� Useful - can be used to gain insight into the field of inquiry.

� Approximation -- will fall short when the data being classified are imprecise
and uncertain, as with security events

Requirements for IAM Taxonomies

� Unification of different types of attack/vulnerability databases
– incorporating organizational structure that unifies and bridges taxonomy

concepts and content (e.g., virus and classical attack databases),

– relating traditional attack information and malicious code descriptions, and

– providing schema support for data slices at multiple levels of abstraction.

� Extended organizational structure
– provide feature inheritance to support representation of evolutionary

properties of attacks, for example, a genealogical approach to encoding the
evolutionary nature of viruses and worms and

– support temporal, causal and other content relationships.

� Encompass a larger development and maintenance environment that
supports taxonomy derivation and customization tools
– facilitate rapid creation of specialized taxonomies,

– emphasize specific attacker objectives, and

– capture the modeler’s own organizing strategies or goals.

Our Thesis

� Measurement-based taxonomies must be discovered from the bottom
up based upon understanding the details of a broad collection of
threats, attacks, and vulnerabilities. They will not be developed from
the top down. The latter approach leads to conceptual taxonomies,
rather than those that capture elements amenable to measurement.
They muddy the details of the relevant components of vulnerabilities
that relate to measurement. Any generalization and abstraction must
be predicated upon and preserve the results of deep error analysis and
faithfully capture it in data organization and content and not introduce
ill-defined concepts or inadvertently mix incommensurable error
properties along the way.

Goals of IAM Taxonomies

� Illuminate and express measurable or estimable events or actions through:

� Detail - expose specific security components amenable to measurement or
estimation.

� Structure - relate events to one another, e.g., decompose progressive, multi-stage,
and complex incidents such as worms into more useful representations. Represent
evolution of attack strategies and other relationships through ordering or inheritance
relationships.

� Derivation - specialization: focusing on reduced class of events with specific
properties. Reduction tools to help produce specialized taxonomies

� Consistency - integration of a variety of sources: HIDS, NIDS, and BSM knowledge
bases; content of major incident and vulnerability databases such as the CERT and
NESSUS databases. Variability in content reporting formats and quality, substantial
quantity of event reports, reliance upon natural language description, and existing
database organizational deficiencies.

� Detection-based Classification - relate taxonomies to detection and observation
mechanisms. May provide opportunities for measurement or estimation that are
unavailable to concept-based classification because of the latter’s association of
like events observed through unlike mechanisms.

Seedling Project Explorations

� Literature review (taxonomies, attack and vulnerability categorizations)

� Raw Data Analysis:
– HIDS (EMERALD/eXpertBSM, Trusted Solaris 8 BSM),

– NIDS (TippingPoint, ISS Real Secure, BlackIce),

– Network Associates Laboratories

4 virus databases - (AVERT and McAfee)

4 historical attack and vulnerability databases - COVERT and
CyberCop Scanner and Monitor

– Other Vendor/sources

4 CISCO, SNORT, SYSLOG…
– Public repositories: CERT, BugTraq, Security Focus, and CVE.

� Identify new directions/thrusts

Virus Classification Example

� McAfee ASaP
– 30 major categories grouping roughly 800 items

– Somewhat arbitrary numerical assignment based on: exploited system
services, attack strategy, specific operating system (e.g., Windows NT)

� AVERT:

– 8 major categories grouping roughly 5800 different virus classifications

– Categories broken down into subcategories of a more descriptive nature
(based upon a broadly-specified exploitation avenue or mechanism,
although some appear to be grouped according to the effect (e.g., Denial
of Service) or in catch-all sub-categories (e.g., miscellaneous))

• McAfee Threat Scan (Anti-virus vulnerability scanner)

– AV-centric vulnerability assessment tool that allows AV administrators to
identify and patch security vulnerabilities that can be exploited by hybrid
threats like Code Red and Nimda

– Checks 90 conditions/vulnerabilities related to HTTP, WWW and CGI

CERT Example

Nessus Vulnerability Scanner

� Backdoors 45

� CGI Abuses 535

� CISCO 48

� Default UNIX Acounts 27

� Denial of Service 147

� Finger Abuses 10

� Firewalls 24

� FTP 77

� Gain a Shell Remotely 63

� Gain Root Remotely 119

� General 99

� Miscellaneous 82

� Netware 2

� NIS 2

� Port Scanners 5

� Remote File Access 58

� RPC 45

� Settings 8

� SMTP Problems 51

� SNMP 12

� Untested 9

� Useless Services 23

� Windows 149

� Windows: (User Mgmt) 24

There are 1664 plugins in the database, covering 1057 unique CVE ids and
1133 unique Bugtraq IDs grouped into the following 24 categories:

Nessus Vulnerability List

Nessus Vulnerability Example

CVE Example

� Standardize the names for all publicly known vulnerabilities and
security exposures.

� Grouped by year (1999 [~1500], 2000 [~1100], 2001 [~500])

� CVE-1999-0002 Buffer overflow in NFS mountd gives root access to
remote attackers, mostly in Linux systems.

– Reference: SGI:19981006-01-I
Reference: CERT:CA-98.12.mountd
Reference: CIAC:J-006
Reference: BID:121
Reference: XF:linux-mountd-bo

IDS Example

ISS/RealSecure

Oracle connection failed: (Oracle_Failed_Connection)
About this signature or vulnerability: This signature detects that an attempt to establish a

connection to the Oracle database server has failed.
Default risk level: Medium
Sensors with this signature: RealSecure OS Sensor: 3.2, RealSecure Server Sensor: 5.5
Systems affected: Windows NT
Type: Host Sensor
Vulnerability description: A connection failed to be established to the Oracle database

server.
How to remove this vulnerability: A single or sporadic connection failure may be normal,

and could be caused by an errant connection attempt. Your audit history can help you
determine if a pattern exists, and whether the pattern is an indicator of unauthorized access.
Most connection activity is normal for accessing a database. Determine the role of this
database and how critical it is in your business activities. This database may have been
started for production, testing, troubleshooting, or development functions. The function of
the database could help determine who should be connecting, how often, and at what times
of the day. Verify that all activities are monitored and retained in an audit history. If there is
no legitimate reason for a particular user to be connecting to this database, if database
activity originates from unexpected user accounts, or if database accesses occur at unusual
times, then this activity may be an indication of misuse.

IDS Examples

� BlackIce

Bionet trojan horse activity
Summary: Bionet trojan horse sent data to an intruder.
Class: Trojan
Defense: Use anti-virus software to remove trojan horse from system.
Risk: Intruder may gain control of the system.
Issue ID: 2001535

� TippingPoint

Name: DNS: TSIG Buffer Overflow exploit 01
 Id: 592

Category: ip.udp.dns
The alarm fires when an attempt to overflow a DNS Transaction Signature is

detected. Successful buffer overflow would give a root access to the attacker.
BIND, a widely used DNS server program, is susceptible to overflow attack while
handling invalid TSIG {Transaction Signature Records). It is possible to overwrite
either the stack {UDP connection) or heap {TCP connection) and execute
arbitrary code with the privileges of Bind daemon {usually root) . The Lion worm
uses TSIG overflow attack to propagate itself.

Attack
Tools

User
Command

Script or
Program

Autonomous
Agent

Toolkit

Distributed
Tool

Data Tap

Results

Corruption of
Information

Disclosure of
Information

Theft of
Service

Denial-of-
Service

Implementation
Vulnerability

Design
Vulnerability

Configuration
Vulnerability

Vulnerabilities Access

Unauthorized
Access

Unauthorized
Use

Processes

Files

Threats

Hackers

Spies

Terrorists

Corporate
Raiders

Professional
Criminals

Vandals

Military
Forces

Objectives

Challenge,
Status

Political Gain

Financial Gain

Damage

Destruction
of an Enemy

Data in
Transit

Objects in
Transit

Invocations
In Transit

Adapted from An Analysis Of Security Incidents On The Internet, 1989 – 1995 , Figure 6.9., Complete Computer and Network Attack Taxonomy, Co pyright John D.
Howard, 1997, all rights reserved, a doctoral thesis submitted t o Carnegie Mellon University, as found at http:// www.cert.org/research/JHThesis/Start.html

Taxonomy Problems

Abstract and insufficiently detailed

Observations/Opinions

1. Vendor and public security databases are generally initialized and updated
according to individual analyst intuition, knowledge and understanding. They lack
uniformity, common vocabulary, semantic consistency, and organization. They tend
to be internally inconsistent as well as inconsistent with one another. They also are
in natural language.

2. Reconciliation of these inconsistencies during production of IAM taxonomies will
require systematic incident analysis and description and may require machine-
based reasoning as well as natural language understanding tools tuned to the
security domain because of content quality, variability of reporting formats, reliance
upon natural language description, and existing database organizational
deficiencies.

Observations/Opinions

3. IAM threat, attack, and vulnerability taxonomy categories must be more closely
related to detection and observation mechanisms.

– Existing taxonomies are instructional, informative, descriptive, procedural,
capture problem terminology

– Do not conform well with measurement or estimation opportunities that may
exist with existing security tools

– Based upon conceptual attack classification rather than detection-based
classification

– Group conceptually similar attacks and events into single categories regardless
of detection methodology. For example, they ignore the fact that different
“buffer overflow” events may be detected and potentially measured at different
interfaces via separate, unrelated mechanisms.

Observations/Opinions

4. Detection-based classification can provide opportunities for measurement or
estimation that are unavailable to concept-based classification because of the
latter’s association of like events observed through unlike mechanisms.

5. Existing taxonomies are not amenable to representation of important event
relationships or interdependencies. Have overly simplistic structure that do not
capture temporal, causal, or evolutionary relationships among threats, attacks,
and vulnerabilities. These are useful relationships for IAM taxonomy structure.

Observations/Opinions

6. IAM taxonomies may be generated in significant part from the analysis of
detection/response mechanism knowledge bases such as Host Intrusion
Detection, Network Intrusion Detection, and BSM (basic security module)
knowledge bases.

7. The content of IAM taxonomy databases may be populated in large part from
the content of major incident and vulnerability databases such as CERT,
NESSUS, and CVE, extended to include uncovered attacks and vulnerabilities
because these are comprehensive and will likely be maintained.

Threat Taxonomies

“A threat is an adversary motivated and capable of exploiting a vulnerability.”
[Schneider, Trust in Cyberspace, 1998]

� Threat Characteristics -- Different types of security threats/attackers exist from the perspective of IAM, both
animate and inanimate.

� Accessibility/Opportunity – There may be specific periods when access controls are reduced or curtailed
(such as preventative maintenance) or circumstances (such as insider threats) where an attacker has
greater access to targets that otherwise.

� Asset Financial Value -- Helps establish attractiveness measures

� Asset Security Value – The exposure of other assets resulting from compromise of this asset.

� Attacker Sophistication/knowledge – e.g., script-kiddie following a canned attack vs sophisticated attacker
with detailed knowledge in a particular area such as HTTP protocol.

� Coordination/synchronization – an attacker may be comprised of multiple elements such as zombie
processes associated with a DDoS attack that have to work in concert to be effective.

� Knowledge - General or specific knowledge of target system properties, public knowledge of system
characteristics, code exposure/publication, and vulnerability publication may provide attackers with different
probability of success.

� Progression - Effectiveness depends upon specific target system properties (e.g., previously installed
backdoors) that may be a prerequisite to successful attack execution.

Attack Taxonomies

“An attack is the means [sequence of actions] of exploiting a vulnerability.”
[Schneider, Trust in Cyberspace, 1998]

� Composition - There are different conceptual levels of attack abstraction employed in existing databases.

� Countermeasures - Knowledge of a vulnerability and its detailed characteristics can suggest particular
countermeasures that may be applied at an individual level or on a more global scale.

� Temporal constraints - A particular attack may only be possible during a particular time of day or day of the week,
or other instance when specific countermeasures are relaxed.

� Preconditions – Enabling conditions that must be satisfied (e.g., available bandwidth)

� References – Links to external attack detail reports such as public databases

� Cumulative effects – An individual instance of an attack component may not be destructive (e.g., SYN) while a
significant quantity of such events may constitute a serious attack (e.g., SYN flood)

� Attack target: host, operating system, service, application, file, user

� Type of attack - virus, buffer overflow, DoS, timing, password, desynchronization, resource exhaustion

� Vehicle: API, email, protocol

� Medium: wired, wireless

� Composition: different components of the total attack.

� Breadth/scope: host, LAN, WAN, Internet

� Bandwidth: communication resource consumption associated with or a manifestation of attacks.

� Interdependency: multiple components working together or progressively to achieve an attack goal.

Vulnerability Taxonomies

“A vulnerability is an error or weakness in design, implementation, or
operation.” [Schneider, Trust in Cyberspace, 1998]

� Vulnerability Presence - A given target platform or resource may or may not be vulnerable to a specific
attack.

� Protection Barriers - Components along an attack path that may protect or isolate assets from particular
types of attacks.

� Temporal Constraints - Periods of specific asset exposure.

� Complexity - Exploitation may depend upon related vulnerabilities for success.

� Context - May require contextual knowledge for successful exploitation, e.g., buffer overflow and
knowledge of stack structure in order to successfully capture of control.

� Temporal - A given vulnerability might only materialize during specific times of the day or in concert with
other events.

� Social engineering -- Necessary to convince the target of an attack to assist in attack execution through
social engineering.

� Access - May require sufficient access time or particular type, level, or object access for execution

� Exposure: (temporal, breadth, depth)

Attack Trees

� A systematic method to characterize system security based on varying attacks.
Each attack tree enumerates and elaborates the ways that an attacker could
cause the event to occur. Each path through an attack tree represents a unique
attack on the enterprise.

� “Attack Trees: Modeling Security Threats,” Dr. Dobb’s Journal, December 1999.
(Schneier)

� “Attack Modeling for Information Security and Survivability”, CMU/SEI-2001-TN-
001 (Moore, Ellison, Linger)

� draft-convery-bgpattack-00 (Convery, Cook, Franz)

 (IETF draft presenting all known attack vectors into or

 using BGP, presented in "Attack Tree" format.)

Partial BGP Attack Tree
(draft-convery-bgpattack-00)

Originate Unauthorized Prefix/Attribute into Peer Route Table
 Attack:
 OR 1. Send from valid Router
 OR 1. Misconfigured
 2. Compromise router (Appendix A.1)
 2. Send from Invalid Router
 AND 1. Gag valid router
 OR 1. Kill Router
 OR 1. Power Off/Physical Layer
 2. Crash and prevent reboot
 3. Conduct denial of service against router
 2. Steal IP Addr
 OR 1. ARP Spoof
 2. Steal MAC
 2. Introduce rogue router (Assume IP)
 OR 1. Steal IP Addr (section 2.1.3.1.2)
 2. IGP More Specific Route Introduction
 3. Establish unauthorized BGP session w/peer
 3. Send spoofed BGP Update from Non-Router
 OR 1. Conduct TCP Sequence Number Attack (Appendix A.4)
 2. Conduct Man-in-the-Middle (Appendix A.3)
 AND 4. Craft BGP Message

� Concern: Majority still not quantifiable or even estimable!

Meta-compilation (Stanford)

� Locate difficult to detect errors in large systems

� Claim: many abstract properties map directly to concrete code actions making it
possible to find rule violations by checking the actions for errors.

� Claim: many system restrictions can be automatically checked via light-weight compiler
extensions

� Employ system_specific static analysis to locate security errors that violate general or
specific implementation rules

 - data/pointer sanitization before use - required or proscribed actions
 - event ordering requirements - legality of actions in a given context

� Locate potentially dangerous code that strongly correlates with the presence of
traditional hard errors including null pointer de-references and unreleased locks.

 - idempotent operations - assignments that were never read
 - dead code - unexercised conditional branches

� Automatically derive implicit program correctness rules directly from code (no explicit
statement of the underlying rule or programmer belief).

� Cross_check rules against code base for coding contradictions that reflect software
errors.

� Approach tested against 4 complex systems: Linux, OpenBSD, the XoK
exokernel, and the FLASH machine's embedded software - over one-hundred
security errors in Linux and OpenBSD were uncovered.

Automated Model Checking (Stanford)

� Locate more subtle programming errors that tend to show up after lengthy
periods of program execution after atypical sequences of events occur

� Traditional model checking takes an abstract, simplified code description exhaustively
tests it under all inputs
- difficult and error prone,
- hard to build
- can take significantly more time to produce than the code being modeled
- checking an abstraction of the code makes it easy to miss real implementation errors

� Stanford automated model checking techniques - 2 major components:
- an extensible compiler system - facilitates model checking for large scale systems
- new form of model checker that works directly on C/C++ implementations

� Automatically extracts model description from code description - combines it with a model
of the hardware, a description of correctness, and an initial state and then checks the
collection with a model checker

� Uncovered 8 errors in prior-exercised cache coherence protocols of the Stanford FLASH
multiprocessor

� Applied to 3 implementations of the Ad-hoc On-demand Distance Vector networking protocol -
34 distinct errors + a bug in the AODV specification

Attack Graphs (CMU)

� Deduce global vulnerabilities by analyzing the effects of interactions of
local vulnerabilities as well as the effects of the interconnection between
hosts

� Automation of Red-team analysis (human-intensive, error prone, and non-scalable)

� Depict ways in which a network can be forced into an unsafe state.

� Each path represents a series of exploits which lead to a violation of a desirable
security property, e.g., protection against unauthorized administrative access.

� Model checking technology automatically generates the graphs (counter-examples
indicate where violation of a desirable safety property can be induced) checking
whether a formal model of the system satisfies a given property.

� 4-step process:

1. Specifying desired security property - violation corresponds to attacker goal

2. Modeling the network (finite state machine - state transitions are to potential
attacks)

3. Producing attack graph from the model

4. Analysis of the attack graph

� Minimization: determine the minimum number of atomic attacks that must be
prevented to guarantee that a particular attacker goal cannot be achieved.

General Recommendations

� Take manageable bites out of the problem space

� No prior understanding as to how they fit

� No grand encompassing research plan

� Jeannette Wing re attack graphs: “We’re all of us now, in the
business of system security, searching for helpful solutions.
They are not going to be the silver bullet; they are not going to
be the one thing, but we have to provide some help…What we
doing here is just systematizing things that are being done by
hand today.” [Jeannette M. Wing, CSE Colloquia 2003,
Research Channel Programming]

Suggested Future Work

Foundation building:

� Refine/formalize the content of preeminent attack collection and
vulnerability databases, the CERT and NESSUS databases,
and CVE lexicon -- internal consistentancy, standardized
repositories of security knowledge and example data that are
uniform in their coverage.

� Additional research into error description & classification

� Security-domain-specific natural language processing tools
(automated) that take natural language descriptions of attacks
and vulnerabilities and reduces them into a standardized format
as well as captures and encodes additional data relationships
specified by the analyst

Suggested Future Work

Other Research Opportunities:

� Attack trees
- Independent validation
- Refinement of BGP attack tree (specificity)
- Check convergence toward a single “correct” attack tree

� Automated vulnerability pattern detection (meta-compilation)
- Independently validate formulation of static error detection

patterns (old and new)

� Automated model checking
- Continue and validate work re automatically generated

models. Extend to different languages (JAVA?)

� Attack graphs
- Scalability to larger collections of hosts and complex

vulnerability data

