Adaptive Fault Tolerant Systems: Reflective Design and Validation

Marc-Olivier Killijian

Dependable Computing and Fault Tolerance Research Group – Toulouse - France

Motivations

- Provide a framework for FT developers
 - Open
 - Flexible
 - Dependability of both embedded and large scale distributed systems
 - Adaptation of fault tolerance strategies to environmental conditions and evolutions
- Validate this framework
 - Test
 - Fault-injection

History

- - Test of MOD based erebitestu
 - Test of MOP based architectures
 - Fault-injection and failure modes analysis

Outline

Reflection for Dependability

- 1. Friends v1 off-the-shelf MOP
 - Limits: static MO, inheritance, etc.
- 2. Friends v2 ad-hoc MOP / CT reflection
- 3. Multi-Level Reflection
- Validation of the platform
 - Test of MOP based architectures
 - Fault-injection and failure modes analysis

Why Reflection?

- Separation of concerns
 - Non functional requirements
 - Applications
- Adaptation
 - Selection of mechanisms w.r.t. needs
 - Changing strategies dynamically
- Portability/Reuse
 - Reflective platform (relates to adaptation)
 - Meta-level software (mechanisms)

Overall Philosophy

Friends v2 : A MOP on Corba

MOP design

Identify information to be reified and controlled

MOP implementation

Compile-time reflection Using CORBA facilities

Prototype for illustration

Architecture and basic services

Fault tolerance mechanisms

Preliminary performance analysis

Necessary information : integrated mechanism example

Necessary information : metaobjects example

Protocol definition

Protocol and interfaces specific to a mechanism

Architecture

Results

- A method for designing a MOP

 Analysis of mechanisms' needs
 MOP features
- Metaobject protocol for fault tolerance
 - Transparent and dynamic association
 - Automatic handling of internal state (full/partial)
 - Portable serialization [OOPSLA'02]
 - Smart stubs delegate adaptation to meta-stubs
 - CORBA compliant (black-box)
 - Some programming conventions

Lessons Learnt

Generic MOP

- No assumption on low layers
- Based on CORBA features

With a platform «black-box»

- Language dependent
- Limitations
 - external state
 - determinism

"Open" platform (ORB, OS and language) Additions of new features to the MOP Optimization of reflective mechanisms

➡ Language level reflection still necessary

Limits to be addressed

Behavioral issues

- Concurrency models: Middleware level
- Threading and synchronization: Middleware/OS level
- Communication in progress: Middleware/OS level

Structural/State issue

- Site-independent internal state : Open Languages
- Site-dependent internal state:
 - Problems: Identification, handling
 - Available means: Syscall interception, Journals and replay monitors
- External state
 - Middleware level
 - OS level

Representation Concept of multilevel reflection

Which protocol?

Meta

Object

Observation

- Interception
 - Creation
 - Destruction
 - Invocations (In and out)
 - Threading
 - Synchronization
 - Communication
- State capture
 - Internal objects
 - Site-dependent objects
 - External objects (MW+OS)
- Links control

Reification

- Object/metaobject
- Clients/servers

- Activation/control
 - Creation
 - Destruction
 - Invocations
 - Threading
 - Synchronization
 - Communication
- State restoration
 - Internal objects
 - Site-dependent objects
 - External objects (MW+OS)
- Links control
 - Object/metaobject
 - Clients/servers

Object

Intercession

Control

Which Platform ?

Which Platform ?

Which Platform ?

Or this one ?

Middleware

С

Language Support

OS

Hardware

Middleware

S

Language Support

OS

Hardware

Which Middleware ?

Which Middleware ?

FT needs to be aware of everything (potentially) but how ?

Reflective languages ...

Reflective middleware ...

Reflective OS ...

A lot of different concepts to manipulate

Fault-Tolerance

Multi-level Reflection

Multilevel Reflection

- Apply reflection to a complete platform
 - Application, Middleware, Operating System
- Consistent view of the internal entities/concepts
 - Transactions, stable storage, assumptions
 - Memory, data, code
 - Objects, methods, invocations, servers, proxies
 - Threads, pipes, files
 - Context switches, interrupts
- Define metainterfaces and navigation tools
 - Which metainterface (one per level? Generic?)
 - − Consistency → metamodel

Different Aspects

- Intra-level information
 - Necessary for FT
 - Efficiency (lowest possible? Same concepts at ≠ levels?)
- Inter-level information
 - ML management (inter-level coupling)
 - Adaptation
 - Concepts/levels navigation

Self-contained, integrated, meta-interface

Requirements of FT-Mechanisms?

Non determinism of scheduling/execution time
 Interlevel interactions mostly asynchronous

Trend: Leverage know-how on FT asynch. distributed sys.

- Causality tracking/ monitoring of non-determinism is needed.
- State capture/ recovery at appropriate granularity is needed.
- ⇔ ... (?)

Inter-Level Coupling^(I)

- A Level = 1..n COTS = A set of interfaces =
 - Concepts
 - Primitives / base entities (keywords, syscalls, data types, ...)
 - Rules on how to use them
- (concepts, base entities, rules) = programming model
 - Very broad notion (includes programming languages)
 - Self contained
- Base entities "a-tomic" within that programming model
 - Can't be split in smaller entities within the programming model.
 - Implemented by more elementary entities within the component.
 - Implementation is internal \Rightarrow hidden to component user.

Inter-Level Coupling^(II)

- CORBA : Location transparent object method invocation
- A CORBA request = aggregation
 - Communication "medium" (pipes, sockets, ...)
 - Local control flow (POSIX threads, Java threads, LWP, ...)
 - \Rightarrow Global control flow abstraction

transparent interaction

Inter-Level Coupling^(III)

- Within a COTS :
 - Coupling between emerging entities of next upper level and implementation entities of lower levels
- Structural coupling relationships ("abstraction mappings")
 - translation / aggregation / multiplexing / hiding
- Dynamic coupling relationships ("interactions")
 - creation / binding / destruction / observation / modification

Extracting Coupling in CORBA

Extracting Coupling in CORBA

 Behavioral model of connection oriented Berkeley sockets as seen by the middleware programmer

FT + Inter-Level Coupling^(I)

- Top-down observation & control
 - State capture
 - Monitoring of non-determinism

System's Functional Interface

FT + Inter-Level Coupling^(II)

- Bottom-up observation & control
 - Fault propagation analysis / confinement
 - Rollback propagation / state recovery

Application Layer L_A Executive Layer L_{n+1} Executive Layer L_n Abstraction Level Lev_n Abstraction Level Lev_n

System's Functional Interface

Meta-filters

- All the information is not always necessary
 - Specific mechanisms need specific info
 - Mechanisms can change over time
- Need a way to dynamically filter
 - Efficiency
 - Don't reify unnecessary things
 - Have hooks ready but passified + subscriptions
- Meta-filters implementation
 - Simple boolean matrices
 - Code-injection techniques

Current & Future Work on MLR

- Still some work on ORB/OS analysis
- Implementation a la carte : several « flavours »
 - Radical style
 → full metamodel
 from scratch or based on modified open-source components
 - Middle-Way based on available reflective components + wrappers
 - EZ way wrapped COTS → limited metamodel
- Evaluate the benefits on mechanisms
 - Efficiency /ad-hoc /language level reflection
 - Evolution of non-funtionnal requirements/asumptions
 - Environmental evolution
- Validation
 - Rigourous testing stategies for reflective/adaptive systems
 - Characterization by various ad-hoc fault injection techniques

Adaptive Fault Tolerant Systems Part II- Testing Reflective Systems

Reflection'00 - DSN'01- IEEE ToC 03 Ruiz, Fabre, Thevenod, Killijian

Dependable Computing and Fault Tolerance Research Group – Toulouse - France

Motivations for testing MOPs

In reflective architectures

- the MOP is the corner stone
- FT completely rely on the reflective mechanisms
- Very little work has been done
 - Few on formal verification
 - None on testing
- Validation of the FT architectures
 - Test of the underlying platform
 - Fault-injection

Testing Reflective Systems

- 1. Test order definition (reification, intercession, introspection)
- 2. Test objectives for each testing level
- 3. Conformance checks for each testing level
- 4. Test environments

Testing MOPs

TL0. Testing preceding the MOP activation *TL1.* Reification mechanisms *TL2.* Behavioral intercession mechanisms *TL3.* Introspection mechanisms *TL4.* Structural intercession mechanisms

Incremental Test Order

TL0. implementation dependent TL1. Reification mechanisms *TL2.* Behavioral intercession mechanisms *TL3.* Introspection mechanisms *TL4.* Structural intercession mechanisms

TL1: Reification (behavioral observation)

TL2: Behavioral intercession

(behavioral control)

metaobject

h

service

Oracle

Server traces are **8** checked according to the data supplied by the test driver

test driver

- Reified information is systematically delivered to the server object

Behavioral

intercession

- Output values are returned to the test driver

metaobject

2

43

TL3: Introspection

(structural observation)

TL4: Structural intercession

(structural control)

Test Experiments (I)

(Service interfaces)

interface shortTypeParameters{
 short ReturnValue ();
 void InValue (in short v);
 void OutValue (out short v);
 void InOutValue (inout short v);
 short All (in short v1,
 out short v2,
 inout short v3);

Reification & Behavioral Intercession

Built-in types, Strings, Class types, Structures and Arrays

Introspection & Structural Intercession

};

interface shortTypeAttributes{
 attribute short ReadWriteValue;
 attribute readonly short ReadValue;
};

Test Experiments (II)

(object-oriented properties considered)

• Inheritance:

 Encapsulation (methods and attributes): public / protected / private

Experimental results

deep

 Reification / Behavioral intercession Method invocations were incorrectly handled using inheritance

 Internal object activity was incorrectly encapsulated

Introspection / Structural intercession

 Object composition VS **Object references**

int fact(int i){ if (i==0) return 1: return i*fact(i-1);

About testing MOPs

- Step forward for testing reflective systems
- Reusing mechanisms already tested for testing the remaining ones.
- Case Study: feasibility and effectiveness of the proposed approach
- Automatic generation of test case input values
- Guidelines for MOP design

Future work

- Generalizing the approach
 - Multi-level reflective systems
 - Aspect-oriented programming

Conclusion

MOPs for FT architectures

- Language reflection / middleware not reflective
- CORBA Portable Interceptors
 - Support for FT too limited
- Unified approach for multi layered open systems
 - Multi-level reflection
- Validation of the platform
 - Test : augment the confidence
 - FI : failure mode analysis
 - feedback on FT mechanisms