
1

Adaptive Fault Tolerant Systems:Adaptive Fault Tolerant Systems:
Reflective Design and ValidationReflective Design and Validation

Marc-Olivier Killijian

Dependable Computing and Fault Tolerance
Research Group � Toulouse - France

2

MotivationsMotivationsMotivations

� Provide a framework for FT developers
� Open
� Flexible
� Dependability of both embedded and large scale

distributed systems
� Adaptation of fault tolerance strategies to

environmental conditions and evolutions

� Validate this framework
� Test
� Fault-injection

3

HistoryHistoryHistory

� Reflection for Dependability
1. Friends v1 - off-the-shelf MOP

– Limits: static MO, inheritance, etc.

2. Friends v2 - ad-hoc MOP / CT reflection

3. Multi-Level Reflection

• Validation of the platform
• Test of MOP based architectures

• Fault-injection and failure modes analysis

4

OutlineOutlineOutline

� Reflection for Dependability
1. Friends v1 - off-the-shelf MOP

– Limits: static MO, inheritance, etc.

2. Friends v2 - ad-hoc MOP / CT reflection

3. Multi-Level Reflection

• Validation of the platform
• Test of MOP based architectures

• Fault-injection and failure modes analysis

5

Why Reflection?Why ReflectionWhy Reflection??

� Separation of concerns
� Non functional requirements

� Applications

� Adaptation
� Selection of mechanisms w.r.t. needs

� Changing strategies dynamically

� Portability/Reuse
� Reflective platform (relates to adaptation)

� Meta-level software (mechanisms)

6

Overall PhilosophyOverall PhilosophyOverall Philosophy

Baselevel
(application objects)

Metalevel
(metaobjects and policies)

One-to-one One-to-many
Dynamic association

Mechanisms
Development

Assumptions

Failure
Modes analysis

W
ra

pp
er

s

O
S

 /
ke

rn
el

M
id

dl
ew

ar
e

C
om

m
. p

ro
to

co
ls

H
a
rd

w
a
re

 p
la

tf
o
rm

A
P

I
Faults

Fault model

SWIFITesting
strategies

7

� MOP design
Identify information to be reified and controlled

� MOP implementation
Compile-time reflection

Using CORBA facilities

� Prototype for illustration
Architecture and basic services

Fault tolerance mechanisms

Preliminary performance analysis

Friends v2 : A MOP Friends v2 : A MOP onon Corba Corba

8

5-apply checkpoint

Necessary information :Necessary information :
integrated mechanism exampleintegrated mechanism example

ReplicaServerClient

1-invocation 4-send checkpoint

6-return7-reply

2-process invocation
3-obtain checkpoint

9

Necessary information :Necessary information :
metaobjects metaobjects exampleexample

ReplicaServerStub

Meta
Stub

MO
Server

MO
Replica

4-send checkpoint

6-return

Observation Control

1-invocation

invocations

3-obtain checkpoint

state capture

2-process invocation

method calls

5-apply checkpoint

state restoration

7-reply

Client

10

Which protocol?Which protocol?

� Interception
� Creation
� Destruction
� Invocations

(In and out)

� State capture
� Links control

� Object/metaobject
� Clients/servers

Meta
Object

Object

Observation

Reification

� Activation
� Creation
� Destruction
� Invocations

� State restoration
� Links control

� Object/metaobject
� Clients/servers

Control

Intercession

11

Protocol definitionProtocol definition

Client

Meta
stub

Metastub

1

Stub

Meta
object

1

2

Server
Stub Object

Metaobject

Protocol and interfaces specific to a mechanism2

12

Using Open CompilerUsing Open Compiler

o.foo();
interInfo TranslateMethodCall (ReifiedInfo) {
 �..
 return NewCode;
}

NewCode

Meta
Class

Open
Compiler

Compile-time MOP

Class
+

MOP Class

13

Node 1Node 1

C1C1

MS1MS1

MOP

Node 2Node 2

S1S1

MO1MO1

MOP

Node 3Node 3

S2S2

MO2MO2

MOP

ORBORB

ArchitectureArchitecture

OFOF MOFMOF GSGS OFOF MOFMOF GSGS OFOF MOFMOF GSGS

Services

14

� A method for designing a MOP
� Analysis of mechanisms� needs ! MOP features

� Metaobject protocol for fault tolerance
� Transparent and dynamic association

� Automatic handling of internal state (full/partial)
� Portable serialization [OOPSLA�02]

� Smart stubs delegate adaptation to meta-stubs

� CORBA compliant (black-box)

� Some programming conventions

ResultsResults

15

� Generic MOP
� No assumption on low layers
� Based on CORBA features

! With a platform «black-box»
� Language dependent
� Limitations

� external state
� determinism

� �Open� platform (ORB , OS and language)
! Additions of new features to the MOP
! Optimization of reflective mechanisms
! Language level reflection still necessary

ORB

Runtime

OS

Language

FT

Lessons LearntLessons Learnt

16

Limits to be addressedLimits Limits to to be addressedbe addressed
� Behavioral issues

� Concurrency models: Middleware level
� Threading and synchronization: Middleware/OS level
� Communication in progress: Middleware/OS level

� Structural/State issue
� Site-independent internal state : Open Languages
� Site-dependent internal state:

� Problems: Identification, handling
� Available means: Syscall interception, Journals and replay

monitors

� External state
� Middleware level
� OS level

" Concept of multilevel reflection

17

Which protocol?Which protocol?

� Interception
� Creation
� Destruction
� Invocations

(In and out)
� Threading
� Synchronization
� Communication

� State capture
� Internal objects
� Site-dependent objects
� External objects (MW+OS)

� Links control
� Object/metaobject
� Clients/servers

Observation

Reification

� Activation/control
� Creation
� Destruction
� Invocations
� Threading
� Synchronization
� Communication

� State restoration
� Internal objects
� Site-dependent objects
� External objects (MW+OS)

� Links control
� Object/metaobject
� Clients/servers

Control

Intercession
Object

Meta
Object

18

Hardware

OS

Middleware

S

Which Platform ?Which Platform Which Platform ??

Hardware

OS

Language Support

Middleware

Hardware

OS

Language Support

Middleware

Universal VM for Distributed Objects

C S

F
au

lt-T
o

leran
ce

19

Hardware

OS

Middleware

S

Which Platform ?Which Platform Which Platform ??

Hardware

OS

Language Support

Middleware

Hardware

OS

Language Support

Middleware

Universal VM for Distributed Objects

C S

F
au

lt-T
o

leran
ce

This one ?
But difference between OS/MW � LS/MW?

20

Hardware

OS

Middleware

S

Which Platform ?Which Platform Which Platform ??

Hardware

OS

Language Support

Middleware

Hardware

OS

Language Support

Middleware

Universal VM for Distributed Objects

C S

F
au

lt-T
o

leran
ce

Or this one ?

21

Hardware

S

Which Middleware ?Which Which Middleware ?Middleware ?

Hardware Hardware

Universal VM for Distributed Objects

C S

F
au

lt-T
o

leran
ce

FT needs to be aware of everything
(potentially)

Under-ware Under-ware

22

Which Middleware ?Which Which Middleware ?Middleware ?
F

au
lt-T

o
leran

ce
FT needs to be aware of everything
(potentially) but how ?

Reflective languages �

Reflective middleware �

Reflective OS �

A lot of different concepts to manipulate

23

Multi-level ReflectionMulti-Multi-level Reflectionlevel Reflection
F

au
lt-T

o
leran

ce

multi-level
meta-model

aggregation

Self-contained, integrated, meta-interface

mono-level
meta-models

24

Multilevel ReflectionMultilevel ReflectionMultilevel Reflection

� Apply reflection to a complete platform
� Application, Middleware, Operating System

� Consistent view of the internal entities/concepts
� Transactions, stable storage, assumptions
� Memory, data, code
� Objects, methods, invocations, servers, proxies
� Threads, pipes, files
� Context switches, interrupts

� Define metainterfaces and navigation tools
� Which metainterface (one per level? Generic?)
� Consistency # metamodel

25

Fault-T
olerance

multi-level
meta-model

aggregation

Self-contained, integrated, meta-interface

� Intra-level information
� Necessary for FT
� Efficiency (lowest possible? Same concepts at ≠ levels?)

� Inter-level information
� ML management (inter-level coupling)
� Adaptation
� Concepts/levels navigation

Different AspectsDifferent AspectsDifferent Aspects

mono-level
meta-models

26

Requirements of FT-
Mechanisms?

Requirements of FT-Requirements of FT-
Mechanisms?Mechanisms?

� Non determinism of scheduling/execution time
!!!!Interlevel interactions mostly asynchronous

Trend: Leverage know-how on FT asynch. distributed sys.
!!!! Causality tracking/ monitoring of non-determinism is

needed.
!!!! State capture/ recovery at appropriate granularity is

needed.
!!!! � (?)

P P

p

q r

p
q
r

o1

o2

t1

t2

[Kasbekar99, Basile02]

t2
o2

o1

t1

27

Inter-Level CouplingInter-Level CouplingInter-Level Coupling

� A Level = 1..n COTS = A set of interfaces =
� Concepts
� Primitives / base entities (keywords, syscalls, data types, �)
� Rules on how to use them

� (concepts, base entities, rules) = programming model
� Very broad notion (includes programming languages)
� Self contained

� Base entities �a-tomic� within that programming model
� Can�t be split in smaller entities within the programming

model.
� Implemented by more elementary entities within the

component.
� Implementation is internal ⇒ hidden to component user.

(I)

28

ob
se

rv
at

io
n

le
ve

l

CORBA interactionclient server

client server

mutex

socketthread

signal

Inter-Level CouplingInter-Level CouplingInter-Level Coupling

� CORBA : Location transparent object method
invocation

� A CORBA request = aggregation
� Communication �medium� (pipes, sockets, �)
� Local control flow (POSIX threads, Java threads, LWP, �)
⇒ Global control flow abstraction transparent interaction

composite
interaction chain

(II)

Mw.

Appli.

29

Inter-Level CouplingInter-Level CouplingInter-Level Coupling

� Within a COTS :
� Coupling between emerging entities of next upper level

and implementation entities of lower levels

� Structural coupling relationships (�abstraction
mappings�)

� translation / aggregation / multiplexing / hiding

� Dynamic coupling relationships (�interactions�)
� creation / binding / destruction / observation / modification

Level N+1

Level N

(III)

Mw.

Appli.

30

Extracting Coupling in CORBAExtracting Coupling in CORBAExtracting Coupling in CORBA

ob
se

rv
at

io
n

le
ve

l

CORBA interactionclient server

client server

mutex

socketthread

signal

(I)

Mw.

Appli.

31

Extracting Coupling in CORBAExtracting Coupling in CORBAExtracting Coupling in CORBA

� Behavioral model of connection oriented
Berkeley sockets as seen by the
middleware programmer

(II)

×close | shutdown
×

send

bound

idle

accepting
connections

accept call accept return

unbound

bind ; listensocket

call to recv return from recv

idle

new socket

waiting
for reception*

*

32

Extracting Coupling in CORBAExtracting Coupling in CORBAExtracting Coupling in CORBA

Dynamic coupling
between CORBA
invocations and
the socket API

Object Creation Thread Creation

Method Invocation

Socket API

* * ×
bind listen accept recv send shutdown

(III)

33

FT + Inter-Level CouplingFT + Inter-Level CouplingFT + Inter-Level Coupling

Executive Layer Ln+1

Executive Layer Ln

Abstraction Level Levn+1

Abstraction Level Levn

System's Functional Interface

Application Layer LA

� Top-down observation & control
� State capture
� Monitoring of non-determinism

Abstraction Level Levn-1

(I)

34

FT + Inter-Level CouplingFT + Inter-Level CouplingFT + Inter-Level Coupling

Executive Layer Ln+1

Executive Layer Ln

Abstraction Level Levn+1

Abstraction Level Levn

System's Functional Interface

Application Layer LA

� Bottom-up observation & control
� Fault propagation analysis / confinement
� Rollback propagation / state recovery

Abstraction Level Levn-1

(II)

35

Meta-filtersMeta-Meta-filtersfilters

� All the information is not always necessary
� Specific mechanisms need specific info
� Mechanisms can change over time

� Need a way to dynamically filter
� Efficiency

� Don�t reify unnecessary things
� Have hooks ready but passified + subscriptions

� Meta-filters implementation
� Simple boolean matrices
� Code-injection techniques

36

Current & Future Work on MLRCurrentCurrent & Future & Future WorkWork on MLR on MLR
� Still some work on ORB/OS analysis
� Implementation a la carte : several « flavours »

� Radical style # full metamodel
from scratch or based on modified open-source components

� Middle-Way
based on available reflective components + wrappers

� EZ way
wrapped COTS # limited metamodel

� Evaluate the benefits on mechanisms
� Efficiency /ad-hoc /language level reflection
� Evolution of non-funtionnal requirements/asumptions
� Environmental evolution

� Validation
� Rigourous testing stategies for reflective/adaptive systems
� Characterization by various ad-hoc fault injection techniques

37

Adaptive Fault Tolerant SystemsAdaptive Fault Tolerant Systems
Part II- Testing Reflective SystemsPart II- Testing Reflective Systems

Reflection�00 - DSN�01- IEEE ToC 03

Ruiz, Fabre, Thevenod, Killijian

Dependable Computing and Fault Tolerance
Research Group � Toulouse - France

38

Motivations for testing MOPsMotivations forMotivations for testing testing MOPs MOPs

� In reflective architectures
� the MOP is the corner stone
� FT completely rely on the reflective mechanisms

� Very little work has been done
� Few on formal verification
� None on testing

� Validation of the FT architectures
� Test of the underlying platform
� Fault-injection

39

Testing Reflective SystemsTesting Reflective SystemsTesting Reflective Systems

1.1. Test Test order definition order definition ((reificationreification, intercession, introspection), intercession, introspection)

2.2. Test objectives for Test objectives for each testing leveleach testing level

3.3. Conformance checks Conformance checks for for each testing leveleach testing level

4.4. Test Test environmentsenvironments

40

Testing MOPsTesting Testing MOPsMOPs

TL0TL0. Testing preceding the MOP activation. Testing preceding the MOP activation

TL1TL1. Reification mechanisms. Reification mechanisms

TL2TL2. Behavioral intercession mechanisms. Behavioral intercession mechanisms

TL3TL3. Introspection mechanisms. Introspection mechanisms

TL4.TL4. Structural intercession mechanisms Structural intercession mechanisms

41

Incremental Test OrderIncremental Test OrderIncremental Test Order

TL0TL0..

TL1TL1. Reification mechanisms. Reification mechanisms

TL2TL2. Behavioral intercession mechanisms. Behavioral intercession mechanisms

TL3TL3. Introspection mechanisms. Introspection mechanisms

TL4.TL4. Structural intercession mechanisms Structural intercession mechanisms

implementation dependentimplementation dependentimplementation dependent

42

serverserver

objectobjectservice
service

test drivertest driver

- Observation- Observation
- - Method execution is Method execution is
 simulated by generating simulated by generating
 a random value for each a random value for each
 output parameteroutput parameter

Comparison: Comparison:
-- Invoked method Invoked method
-- Parameter Parameter values values
-- Output valuesOutput values

22

11

33

44

OracleOracle metaobjectmetaobject

m
etaobject

m
etaobject

66

55

TL1: Reification
(behavioral observation)

TL1: ReificationTL1: Reification
(behavioral observation)(behavioral observation)

43

BehavioralBehavioral
iintercessionntercession

service
servicetest drivertest driver

-- Reified information is Reified information is
 systematically delivered systematically delivered
 to the server objectto the server object
-- Output values are Output values are

 returnedreturned to to the test the test
 driverdriver

Server traces are Server traces are
checked according to checked according to
the data supplied by the data supplied by
the test driverthe test driver

11 66

OracleOracle
metaobjectmetaobject

m
etaobject

m
etaobject

88

44

55 22

33

77

TL2: Behavioral intercession
(behavioral control)

TL2: Behavioral intercessionTL2: Behavioral intercession
(behavioral control)(behavioral control)

44

TL3: Introspection
(structural observation)

TL3: IntrospectionTL3: Introspection
(structural observation)(structural observation)

metaobjectmetaobject

m
etaobject

m
etaobject

m
et

ac
on

tr
ol

m
et

ac
on

tr
ol

BehavioralBehavioral
iintercessionntercession IntrospectionIntrospection

service
service

test drivertest driver

Is the introspectedIs the introspected
state consistent state consistent withwith
the initialization the initialization
state?state?

11

22

33

44 55 66

77

OracleOracle

StateState

45

TL4: Structural intercession
(structural control)

TL4: Structural intercessionTL4: Structural intercession
(structural control)(structural control)

metaobjectmetaobject

m
etaobject

m
etaobject

m
et

ac
on

tr
ol

m
et

ac
on

tr
ol

BehavioralBehavioral
iintercessionntercession IntrospectionIntrospection

service
service

test drivertest driver

Is the introspectedIs the introspected
state consistent state consistent withwith
the initialization the initialization
state?state?

11--22
33

44 55 66

77

StructuralStructural
intercessionintercession

5511--22
OracleOracle

StateState

46

Test Experiments (I)
(Service interfaces)

Test Experiments (I)Test Experiments (I)
((ServiceService interfaces) interfaces)

interface interface shortTypeParametersshortTypeParameters{{
 short short ReturnValueReturnValue ();();
 void void InValueInValue (in short v);(in short v);
 void void OutValueOutValue (out short v);(out short v);
 void void InOutValueInOutValue ((inout inout short v);short v);
 short short AllAll (in short v1,(in short v1,

 out short v2,out short v2,
 inout inout short v3);short v3);

};};

IntrospectionIntrospection
&&

StructuralStructural
IntercessionIntercession

BuiltBuilt-in types,-in types,
Strings, Strings,

Class types,Class types,
Structures Structures and Arraysand Arrays

ReificationReification
&&

BehavioralBehavioral
IntercessionIntercession

interface interface shortTypeAttributesshortTypeAttributes{{
 attribute attribute short short ReadWriteValueReadWriteValue ;;
 attribute readonly attribute readonly short short ReadValueReadValue ;;
};};

47

�� Inheritance:Inheritance:

�� Encapsulation (methods and attributes):Encapsulation (methods and attributes):

public / protected / privatepublic / protected / private

Test Experiments (II)
 (object-oriented properties considered)

Test Experiments (II)Test Experiments (II)
 ((object-oriented properties consideredobject-oriented properties considered))

B

A

simplesimple B

A C

multiplemultiple

48

�� Internal object activity was Internal object activity was

 incorrectly incorrectly encapsulatedencapsulated

Experimental resultsExperimental results
�� Reification / Behavioral intercessionReification / Behavioral intercession

�� Method invocations were incorrectly Method invocations were incorrectly

 handled using inheritance handled using inheritance

�� Object Object compositcompositiion on
vs vs

Object referencesObject references

�� Introspection / Structural intercessionIntrospection / Structural intercession

externalexternal
objectobject

internalinternal
objectobject

referencereference

deep deep
copy/restorecopy/restore

int factint fact((int int i){i){
 if (i==0) return 1; if (i==0) return 1;
 return i* return i*factfact(i-1);(i-1);
}}

shallowshallow
copy/restorecopy/restore

BB

AA

foofoo()()

foofoo()()
fooIdfooId

fooIdfooId

49

About testing MOPsAbout testing About testing MOPsMOPs

�� Step forward for testing reflective systemsStep forward for testing reflective systems
�� Reusing mechanisms already tested for testing the remaining ones.Reusing mechanisms already tested for testing the remaining ones.
�� Case Case StudyStudy: f: feasibility easibility and and effectiveneffectiveneess ss ofof the proposed approach the proposed approach

�� Automatic generationAutomatic generation of test case input values of test case input values

�� Guidelines for MOP designGuidelines for MOP design

FutureFuture work work
�� Generalizing the approachGeneralizing the approach

�� Multi-level reflective systemsMulti-level reflective systems

�� Aspect-oriented programmingAspect-oriented programming

�� Testing reflection Testing reflection # Reflection for testing

50

ConclusionConclusionConclusion

� MOPs for FT architectures
� Language reflection / middleware not reflective

� CORBA Portable Interceptors
� Support for FT too limited

� Unified approach for multi layered open systems
� Multi-level reflection

� Validation of the platform
� Test : augment the confidence

� FI : failure mode analysis
� feedback on FT mechanisms

