Adaptive Fault Tolerant Systems:
Reflective Design and Validation

Marc-Olivier Killijian
L EAAS-

Dependable Computing and Fault Tolerance
Research Group — Toulouse - France

Motivations

* Provide a framework for FT developers
— Open
— Flexible

— Dependability of both embedded and large scale
distributed systems

— Adaptation of fault tolerance strategies to
environmental conditions and evolutions

e Validate this framework
— Test
— Fault-injection

History

Reflection for Dependability
1. Friends v1 - off-the-shelf MOP

— Limits: static MO, inheritance, etc.

2. Friends v2 - ad-hoc MOP / CT reflection
3. Multi-Level Reflection
Validation of the platform

 Test of MOP based architectures
« Fault-injection and failure modes analysis

Outline

Reflection for Dependability
1. Friends v1 - off-the-shelf MOP

— Limits: static MO, inheritance, etc.

2. Friends v2 - ad-hoc MOP / CT reflection
3. Multi-Level Reflection
Validation of the platform

e Test of MOP based architectures
e Fault-injection and failure modes analysis

Why Reflection?

* Separation of concerns
— Non functional requirements
— Applications
* Adaptation
— Selection of mechanisms w.r.t. needs
— Changing strategies dynamically
* Portability/Reuse

— Reflective platform (relates to adaptation)
— Meta-level software (mechanisms)

Overall Philosophy

Metalevel

(metaobjects and policies)]

One-to-one T One-to-many
Dynamic association

\ 4

Baselevel L w
(application objects) N \
|

Testing Mechanisms Failure
~ strategies Development Modes analysis

| | S Faulis 3

Assumptions Fault model

Wrappers
Middleware
OS / kernel

> Comm. protocols
Hardware platform

Friends v2 : A MOP on Corba

« MOP design

|dentify information to be reified and controlled

« MOP implementation
Compile-time reflection
Using CORBA facilities

* Prototype for illustration
Architecture and basic services
Fault tolerance mechanisms

Preliminary performance analysis

Necessary information :
iIntegrated mechanism example

4-send checkpoint

> >

Client Server
<

1-invocation

< Replica

7-reply \'Z 6-return \/
2-processnvocation

3-obtain checkpoint

5-apply checkpoint

Necessary information :
metaobjects example

4-send checkpoint

>
MO MO
Server Replica

>

<
T 7-reply l l 6-return l

Client —» Stub Server Replica

1-invocation 2-process invocation 5-apply checkpoint
3-obtain checkpoint

Observation Control
invocations method calls
state capture state restoration

Which protocol?

Meta
Object

Observation

Control

e

— Interception
* Creation
* Destruction

* [nvocations
(In and out)

— State capture
— Links control

* Object/metaobject
* Clients/servers

— Activation
* Creation
* Destruction
* |nvocations

— State restoration

— Links control
* Object/metaobject
* Clients/servers

™~

Reification

/

Intercession

Protocol definition

Meta Meta
stub »2| object

Metastub Metaobject

Protocol and interfaces specific to a mechanism

Using Open Compiler

e

Compile-time MOP l T

Open
Compiler

interInfo TranslateMethodCall (ReifiedInfo) {

return NewCode;

}

Architecture

000+—000—000

|

Results

* A method for designing a MOP

— Analysis of mechanisms’ needs => MOP features

* Metaobject protocol for fault tolerance
— Transparent and dynamic association

— Automatic handling of internal state (full/partial)
* Portable serialization [OOPSLA’02]

— Smart stubs delegate adaptation to meta-stubs
— CORBA compliant (black-box)

— Some programming conventions

L essons Learnt

* (Generic MOP

— No assumption on low layers Language
— Based on CORBA features

With a platform «black-box»

Runtime

* “Open’ platform (ORB , OS and language) 0S
®» Additions of new features to the MOP
®» Optimization of reflective mechanisms
®» L anguage level reflection still necessary

Limits to be addressed

* Behavioral issues
— Concurrency models: Middleware level
— Threading and synchronization: Middleware/OS level
— Communication in progress: Middleware/OS level

* Structural/State issue
— Site-independent internal state : Open Languages
— Site-dependent internal state:

* Problems: Identification, handling

* Available means: Syscall interception, Journals and replay
monitors

— External state

* Middleware level
* OS level

1> Concept of multilevel reflection

Which protocol?
Observation N onZ%it \ Control

— Interception
* Creation
* Destruction

* |nvocations
(In and out)

— Activation/control
* Creation
* Destruction
* |Invocations

— State restoration

— State capture
* Internal objects

* Internal objects

— Links control
* Object/metaobject
* Clients/servers

— Links control
* Object/metaobject
* Clients/servers

\ Object /

Intercession

Reification

Which Platform ?

O &)

Universal VM for Distributed Objects

Middleware Middleware

Language Support Language Support _

9aoue.a|o|-}jne

0S * 0S

Hardware Hardware

Which Platform ?

This one ?
But difference between OS/MW ... LS/ MW?

O &)

Universal VM for Distributed Objects

Middleware Middleware

Language Support Language Support _

9aoue.a|o|-}jne

0S * 0S

Hardware Hardware

Which Platform ?

Or this one ?

O &)

Universal VM for Distributed Objects

Middleware Middleware

Language Support Language Support _

0S * 0S

Hardware Hardware

9aoue.a|o|-}jne

Which Middleware ?

FT needs to be aware of everything
(potentially)

O &)

Universal VM for Distributed Objects

Yyvy

Under-ware Under-ware

YIYY VYiY
9aoue.a|o|-}jne

Hardware Hardware

Which Middleware ?

FT needs to be aware of everything
(potentially) but how ?

Yyvy

Reflective languages ...

Reflective middleware ...

YIYY VYiY
9aoue.a|o|-}jne

Reflective OS ...

A lot of different concepts to manipulate

Multi-level Reflection

mono-level multi-level
meta-models meta-model

9
.
e

9aoue.a|o|-}jne

/

Self-contained, integrated, meta-interface

Multilevel Reflection

* Apply reflection to a complete platform
— Application, Middleware, Operating System

* Consistent view of the internal entities/concepts
— Transactions, stable storage, assumptions
Memory, data, code
Objects, methods, invocations, servers, proxies
Threads, pipes, files
Context switches, interrupts

* Define metainterfaces and navigation tools
— Which metainterface (one per level? Generic?)
— Consistency = metamodel

Different Aspects

* Intra-level information
— Necessary for FT
— Efficiency (lowest possible? Same concepts at # levels?)

* Inter-level information
— ML management (inter-level coupling)
— Adaptation

— Concepts/levels navigation

mono-level multi-level
meta-models meta-model

&

Self-contained, integrated, meta-interface

Requirements of FT-
Mechanisms?

* Non determinism of scheduling/execution time
=Interlevel interactions mostly asynchronous

Trend: Leverage know-how on FT asynch. distributed sys.

= Causality tracking/ monitoring of non-determinism is
needed.

= State capture/ recovery at appropriate granularity is
needed.

2 ... (?)

~
x‘«% \}j;/‘ ::>

[Kasbekar99, Basile0?] P

)

Inter-Level Coupling (

 AlLevel=1..n COTS = A set of interfaces =

— Concepts

— Primitives / base entities (keywords, syscalls, data types, ...)
— Rules on how to use them

* (concepts, base entities, rules) = programming model

— Very broad notion (includes programming languages)
— Self contained

* Base entities “a-tomic” within that programming model

— Can'’t be split in smaller entities within the programming
model.

— Implemented by more elementary entities within the
component.

— Implementation is internal = hidden to component user.

Inter-Level Coupling(”)

* CORBA : Location transparent object method
Invocation

* A CORBA request = aggregation
— Communication “medium” (pipes, sockets, ...)

— Local control flow (POSIX threads, Java threads, LWP, ...

= (Global control flow abstraction
A

<

CORBA interaction
>

.. thread socket "
cI ient 0’4—»‘4—».4—» Server
. / e

__ Mw. |

Mw.

observation level

signal ’y//

mutex

an

Inter-Level Coupling

* Within a COTS :

— Coupling between emerging entities of next upper level
and implementation entities of lower levels

e Structural coupling relationships (“abstraction
mappings”)

— translation / aggregation / multiplexing / hiding

* Dynamic coupling relationships (“interactions”)
— creation / binding / destruction / observation / modification

Mw.

()
Extracting Coupling in CORBA

<

CORBA interaction
>

MW .. thread socket

cI ient 0’4—».4—».4—» Server

©
L5
c
=
T
>
i
o

signa ’?//
mutex

(1)
Extracting Coupling in CORBA

* Behavioral model of connection oriented «»
Berkeley sockets as seen by the Q

middleware programmer £ o4

X

close | shutdown

/._;@‘\ \ new socket

accept call accept return send =

accepting
connections cal torecv return from recy <=

\ bouny . waiting
~k socket T bind ; listen for reception

0—»[unbbund]

an
Extracting Coupling in CORBA

Thread Creation

ObJeCt Creat|0n |]l3I"'-.|.|'-.|.|"~1 wter Threaded

/ e -|r.||||'| 'ln'l.I |I

IlI » P _l'_'.'|.-'l.| e . I= -
I e SterrrerThread i starterRon

GIOPServerStarter CIOPServerWorkerThreoded : run

A
FIOPServer'Worker Threaded h 4:setStateNoS yng Starter Thread

GIOPServerStare)

1anew Thiread

L:listen d:receive detect 4:send detect 4:close - drecelverHun
‘ FIrH

Acceptor_impl I I mnsport_1mpl Receiver Thread

/ \I\/I ethod I nvocation / \\
| :bind l:listen %\ 3:nccept trrec }:send 4:shutdown Dynarr" C Coupl | ng
_

Socket API
, ' ' o between CORBA
bind || listen || accept recv send shutdown | jnvocations and

* % f f * X the socket AP

FT + Inter-Level Coupling"”

* Top-down observation & control
— State capture

— Monitoring of non-determinism
System's Functional Interface

Application Layer L, ’.\ Abstraction Level Lev, , ,
‘ Abstraction Level Lev,

..

Executive Layer L

/

Executive Layer L_,

aN Abstraction Level Lev,

7

FT + Inter-Level Coupling'

* Bottom-up observation & control
— Fault propagation analysis / confinement

— Rollback propagation / state recovery
System's Functional Interface

Apphcatlon Layer L, i Abstraction Level Lev,

/
Executive Layer L, Abstraction Level Lev,
/ _/
Executive Layer L, ; Abstraction Level Lev,

— _—

Meta-filters

* All the information is not always necessary
— Specific mechanisms need specific info
— Mechanisms can change over time

* Need a way to dynamically filter
— Efficiency

* Don't reify unnecessary things
* Have hooks ready but passified + subscriptions

* Meta-filters implementation
— Simple boolean matrices
— Code-injection techniques

Current & Future Work on MLR

e Still some work on ORB/OS analysis

* Implementation a /a carte : several « flavours »

— Radical style = full metamodel
from scratch or based on modified open-source components

— Middle-Way
based on available reflective components + wrappers
— EZ way
wrapped COTS - limited metamodel
* Evaluate the benefits on mechanisms
— Efficiency /ad-hoc /language level reflection
— Evolution of non-funtionnal requirements/asumptions
— Environmental evolution

* Validation
— Rigourous testing stategies for reflective/adaptive systems
— Characterization by various ad-hoc fault injection techniques

Adaptive Fault Tolerant Systems
Part Il- Testing Reflective Systems

Reflection’00 - DSN’01- IEEE ToC 03
Ruiz, Fabre, Thevenod, Killijian

> N

Dependable Computing and Fault Tolerance
Research Group — Toulouse - France

Motivations for testing MOPs

* In reflective architectures

— the MORP is the corner stone

— FT completely rely on the reflective mechanisms
* Very little work has been done

— Few on formal verification

— None on testing

* Validation of the FT architectures
— Test of the underlying platform
— Fault-injection

Testing Reflective Systems

. Test order definition (reification, intercession, introspection)
. Test objectives for each testing level
. Conformance checks for each testing level

. Test environments

Testing MOPs

TLO. Testing preceding the MOP activation
TL1. Reification mechanisms

TL2. Behavioral intercession mechanisms
TL3. Introspection mechanisms

TL4. Structural intercession mechanisms

Incremental Test Order

TLO.

TL1. Reification mechanisms

TL2. Behavioral intercession mechanisms
TL3. Introspection mechanisms

TL4. Structural intercession mechanisms

TL1: Reification

(behavioral observation)

Oracle

Comparison: 6
- Invoked method
- Parameter values
- Output values

R,

IJIAIIS

metaobject

- Observation 2
- Method execution is
simulated by generating
a random value for each
output parameter

object

server

TLZ2: Behavioral intercession

(behavioral control)

Oracle

Server traces are
checked according to
the data supplied by
the test driver

8

3[qoe)om

metaobject

- Reified information is
systematically delivered
to the server object

- Output values are
returned to the test
driver

IJNAIIS

2
=
g
2

INMAJIIS

TL3: Introspection

(structural observation)

metaobject

Behavioral
intercession

test driver

6

Oracle

Is the introspected
state consistent with
the initialization
state?

TL4: Structural intercession

(structural control)

metaobject

2
=
g
2

racle
Behavioral O

intercession

Is the introspected
% state consistent with
the initialization 7

[State l state?

Introspection

IJIAIIS

Test Experiments (I)

(Service interfaces)

interface shortTypeParameters{ Reification
short ReturnValue (); &
void InValue (in short v); BEhaViOl:al
void OutValue (out short v); Intercession
void /nOutValue (inout short v);
short A/l (in short vl1,

out short v2,
inout short v3);

Built-in types,
Strings,
Class types,
Structures and Arrays

i

Introspection ; terface shortTypeAttributes{
& attribute short ReadWriteValue ;
Structural attribute readonly short ReadValue ;

Intercession /3

Test Experiments (lI)

(object-oriented properties considered)

* Inheritance:

simple multiple

* Encapsulation (methods and attributes):
public / protected / private

Experimental results

* Reification / Behavioral intercession

— Method invocations were incorrectly

handled using inheritance

— Internal object activity was int fact(int i){
) if (i==0) return 1;
incorrectly encapsulated s i*fact(i-1);

* Introspection / Structural intercession

: i shallow
— Object composition copy/restore

VS reference
- external
Object references 1
internal
deep object
copy/restore

About testing MOPs

Step forward for testing reflective systems
Reusing mechanisms already tested for testing the remaining ones.
Case Study: feasibility and effectiveness of the proposed approach

Automatic generation of test case input values
Guidelines for MOP design

Future work

Generalizing the approach
— Multi-level reflective systems
— Aspect-oriented programming

Testing reflection = Reflection for testing

Conclusion

* MOPs for FT architectures

— Language reflection / middleware not reflective

— CORBA Portable Interceptors
* Support for FT too limited

— Unified approach for multi layered open systems
* Multi-level reflection
* Validation of the platform
— Test : augment the confidence

— FI : failure mode analysis
* feedback on FT mechanisms

