
Adaptive Middleware for
Embedded Systems:

Developing a Formal Model, Language Abstractions

and Implementation Techniques

Gul A. Agha
Open Systems Laboratory

University of Illinois at Urbana-Champaign

Jan 7, 2003 UIUC OSL Middleware 2

Acknowledgements

Joint work with

• Carolyn Talcott, SRI

• Nalini Venkatasubramanian, UC Irvine

• Dan Sturman and Mark Astley, IBM Research

• Svend Frolund, HP Labs

• Other Current and Former Members of OSL

• Supported by DARPA Nest Program, ONR and
National Science Foundation

Jan 7, 2003 UIUC OSL Middleware 3

Open Distributed Systems
(ODS)

Electronic
Commerce

Entertainment

Distance Learning

Tele-medicine

Video
Servers

Graphics
Processing

Web
Servers

Requirements - Availability, Reliability, Quality-of-Service, Security, Adaptability

Jan 7, 2003 UIUC OSL Middleware 4

Outline of Talk

• Context and motivation

• Formal Methods for Distributed Middleware
– Actor theories and the TLAM

– Examples

• Network Embedded Systems
– Modeling Issues

– Example NEST Middleware Architecture

• Research Directions

Jan 7, 2003 UIUC OSL Middleware 5

From a System Designer or
Programmer Point of View

• Would like to design and program at the
level of interaction between applications

• Want to specify and program different
concerns separately
–basic functionality

–security

–dependability / availability

–real-time requirements

Jan 7, 2003 UIUC OSL Middleware 6

 Problems
• OS provides only low level communication and

resource management
• Different languages have different

representations and interaction mechanisms
• Coordination of distributed components is

complex
• Assuring non-interference -- concurrently

executing `independent’ services may share
– resources -- bandwidth, cycles, memory
– information -- database, sensors/actuators

Jan 7, 2003 UIUC OSL Middleware 7

Distributed Systems Middleware

• Enables communication across multiple
– computers
– programming languages
– data representations

• Can support QoS requirements
• Provide services for higher-level programming

abstractions, e.g.
– group communication
– transactions
– data aggregation

Jan 7, 2003 UIUC OSL Middleware 8

Basic Middleware Services

Middleware services may be built out of basic services:

• Communication:
– location transparency

– marshalling/unmarshalling arguments

• Naming / directory
– locating objects / services

• Life cycle
– create, activate, stop, delete

– copy (across machine)

– persistence (save, restore)

• Scheduling

Jan 7, 2003 UIUC OSL Middleware 9

Middleware needs
formal methods support

• Agreed upon standards for services and
their interfaces (APIs)

• Notion of conformance to standards

• Analysis of standards and service
specifications
–what assumptions do they make for correct

operation?

–what are the potential (positive or negative)
interactions?

Jan 7, 2003 UIUC OSL Middleware 10

Two Level Actor Machine
(TLAM)

• A semantic framework for specifying and
reasoning about middleware services.

• Based on the actor computation model for
Open Distributed Systems:
– base-level actors model application

functionality.
– meta-level actors model middleware services.

• Use of core services to isolate interactions.
• Specification viewpoints

Jan 7, 2003 UIUC OSL Middleware 11

The Actor Model

A Model of Distributed Object
Computation

Thread
State

Procedure

Thread
State

Procedure

Thread
State

Procedure

Interface

Interface

Interface

Messages

Jan 7, 2003 UIUC OSL Middleware 12

Core Services

Base (Application) LevelBase (Application) Level

Distributed
Snapshot

Remote
Creation

Directory
Services

Replication

Migration

DGC

Checkpointing

Access
Control

Core services allow us to isolate complex interactions
-- useful for managing composition of services

Meta (System) Level

Jan 7, 2003 UIUC OSL Middleware 13

Specification Viewpoints

Global System FunctionsGlobal System Functions

meta
behavior

meta
behavior

...

Node Base System

ApplicationApplication

End-End
service

specificati
on

 (E)

System
specification

 (S)

Behavior
specification

(B)

State

Procedure
Algorithmic
specification

(A)

Jan 7, 2003 UIUC OSL Middleware 14

Relating Specification
Viewpoints

• (S => E) system spec implies end-to-end service
spec

• (B => S if I and NI) behavior spec implies
system spec if

– (I) initial conditions satisfied

– (NI) non-interference conditions satisfied

• (A=>B) algorithm spec implies behavior spec

•

Jan 7, 2003 UIUC OSL Middleware 15

Actor Theories

• Actor theories specify:
– the set of individual actor states

– the set of messages

– reaction rules that determine how an actor in a given
state may evolve

• An actor system configuration is a `soup’ of
actors and messages -- a global snapshot from
some viewpoint

• An actor system evolves by (concurrent)
application of the reaction rules (fairly applied)

Jan 7, 2003 UIUC OSL Middleware 16

Ticker Actor Specification

For c,t actor ids, n a number
• States: T(n)
• Messages: tick, time@c, reply(n)
• Reaction Rules:
 (t | T(n)) t ← tick
 ==>
 (t | T(n+1)) t ← tick

 (t | T(n)) t ← time@c
 ==>
 (t | T(n)) c ← reply(n)

Jan 7, 2003 UIUC OSL Middleware 17

Ticker Actor Scenario

(t|T(2))

(c|..t..)

t←tick
...

...

(t|T(3))

(c|..t..)

t←tick
...

t←time@c

(t|T(3))

(c|..t..)

t←tick

...
c←reply(3)

dlv(t←tick)

dlv(t←time@c)

... c ...

Jan 7, 2003 UIUC OSL Middleware 18

The Two Level Actor Model
(TLAM)

• Stratify actors into
– Base-level actors (application)

– Meta-level actors (system level / middleware)

• Base-level actors and messages are augmented with annotations
(meta-data)

• Actors and undelivered messages are distributed over a network of
nodes and links

• Meta-level actors
– can examine/modify runtime state and annotations of colocated base-

level objects

– react to local base-level events of interest

– cooperate with possibly remote meta actors to provide system wide
services.

Jan 7, 2003 UIUC OSL Middleware 19

Two Level Actor Theory

• An actor theory extend by
– annotations for base actor states and messages

– a set of meta actor states

– a set of meta-level messages

– reaction rules for meta-actor

• parameterized by local base-level configuration

– event handling rules that determine how a meta-actor
reacts to base level events (changes due to base-level
reactions or to meta-level modifications)

Jan 7, 2003 UIUC OSL Middleware 20

Ticker Monitor Specification

• States: M(t,mc,m)
• Messages: log(t,n,m,c), reset, reset-ack

– t,mc,c are actor ids, n,m are numbers

• Reaction Rules:
 (tm | M(t,mc,m))
 ={dlv((t|T(n))t←time@c)/ }=>
 (tm | M(t,mc,m+1)) mc ← log(t,n,m+1,c)

 (tm | M(t,mc,m)) tm ← reset
 ={ /t:=T(0)}=>
 (tm | M(t,mc,0)) mc ← reset-ack

Jan 7, 2003 UIUC OSL Middleware 21

Monitored Ticker Scenario

(tm|M(t,mc,0))

(c|..t..)

t←tick...
...

(tm|M(t,mc,0))

(c|..t..)

t←tick...
t←time@c

(t|T(3))

(c|..t..)

t←tick

...
c←reply(3)

(t|T(2))

(t|T(3))

(tm|M(t,mc,1))

mc←log(t,3,1,c)

dlv(t←tick)

dlv(t←time@c)

... c ...

Jan 7, 2003 UIUC OSL Middleware 22

Log Service Example

A logging service

• Logs messages delivered to a given set of
base actors, and

• When requested reports the messages
logged since the previous request.

Jan 7, 2003 UIUC OSL Middleware 23

Logging Non-interference
Requirement

• A system S satisfies the logging non-
interference requirement if:
– non-logging meta actors do not set Log

attributes

– the only messages sent to logging meta
actors by non-logging meta actors are log
request messages addressed to the log server

Jan 7, 2003 UIUC OSL Middleware 24

Logging Theorems

• Theorem 1 (Base-meta noninterference)
–If system S has Logging Behavior, then Log

meta-actors of S preserve base-level
behavior.

• Theorem 2 (Behavior implies service)
–If system S has Logging Behavior and

satisfies the logging initial conditions and non-
interference requirements, then S provides
logging service.

Jan 7, 2003 UIUC OSL Middleware 25

Other Case Studies
using TLAM

• QoS based Multimedia (MM) Server
–Serves requests for presentation of MM

object with specified QoS (latency, jitter,
frame-rate ...)

–End-end spec:
• every request is either served with the required

QoS, or

• explicitly denied if QoS requirements can not be
met

Jan 7, 2003 UIUC OSL Middleware 26

Network Embedded Systems

• From web of computers to web of
everything!

• Paradigm shift from distributed to network
embedded systems
– Large-Scale

– Real-time sensors and actuators

– Integration of Discrete and Continuous
processes

Jan 7, 2003 UIUC OSL Middleware 27

Modeling Issues for NEST

• Large scale network embedded
systems exhibit behaviors that need
stochastic analysis.
– Unpredictable node failures, random

communication delay, emerging properties
in work load.

– Incomplete knowledge and uncertainty
lead to probabilistic approximation.

Jan 7, 2003 UIUC OSL Middleware 28

Develop a Probabilistic Variant of Real-time
Concurrency Semantics

• Probabilities on
transitions.

• Summations over

 execution paths

 for statistical metrics.

• Quantify approximation

 and timeliness.

Jan 7, 2003 UIUC OSL Middleware 29

Distributed Model of Time

• Global synchronous wall clock
– Synchronization is too tight
– Too detailed an execution model

• Asynchronous, distributed time
– Vector clocks are too expensive
– Application behavior is complicated

Need a more expressive model of
time:

• Notion of distance and distribution.
• Space-Time cone of causal

influence.

x

t

P
Q

R

S

Not
Causally
related

Past
causally

connected

Future
causality

y

Light Cones

Jan 7, 2003 UIUC OSL Middleware 30

Distributed Time and Probability

• Events separated in space
are separated in time:
– Scheduling delays
– Latency and communication

delays

• Such delays are
probabilistic in nature

• Probabilistic cone

x

t

P
Q

R

S

Not
Causally
related

Past
causally

connected

Future
causality

y

x

Q’

S’

Jan 7, 2003 UIUC OSL Middleware 31

Probabilities in Actor Semantics

0.2

Actors

p(t)

Message delay density function

�Non-determinism in message order replaced by
probability distribution

� Total asynchrony replaced by probabilistic delay

0.8

Jan 7, 2003 UIUC OSL Middleware 32

Probabilistic Rewrite Theory

• Rewrite theories are abstract (economic
specifications).

• Rewrite theories can be efficiently
implemented (in Maude).

• Probabilistic rewrite theory can be used to
formally reason about large-scale network
embedded systems.

• Time skews subsumed by probabilities.

Jan 7, 2003 UIUC OSL Middleware 33

Probabilistic Rewrite Theory

RRRR = (Σ,E,L,R,ρ)

• Σ is a signature (sorts and operation
 declarations)

• E is a set of equations

• L is set of labels (of rewrite rules)

• R is set of rewrite rules

• ρ is a rate function: ρ maps a rule of the form
l : t → t’i if Ci to a positive real r

Jan 7, 2003 UIUC OSL Middleware 34

Probabilistic Rewrite Theory (contd.)

For each label l ε L and its associated rule, there are probabilistic rewrite rules:
l : t → t’1 if C1 [rate r1(X)]

 ……

l : t → t’n if Cn [rate rn(X)]

where Ci is a conjunction of equation and membership predicates.

Let TΣ/E be the ground terms in the initial algebra of a probabilistic rewrite
theory. Then

ρ : R → TΣ/E(X)PosReal

where
- X is the set of all free variables in t , t’1, …, t’n
- PosReal is the sort of positive real numbers

Jan 7, 2003 UIUC OSL Middleware 35

Example

Modeling randomized algorithms

[crl] State ⇒ S(A) if cond (x) [metadata “p(y)”]
[crl] State ⇒ S(B) if cond (z) [metadata “0.2”]

Modeling communication delays

[rl] m<o:recv|time:t> ⇒
 <o:recv|time:t+x>[metadata “p(x)”]

Modeling node failures

[crl] mote ⇒ fail if cond(x,y) [metadata “p(z)”]
[crl] mote ⇒ doAction [metadata “1-p(z)”]

failures

Delays

Jan 7, 2003 UIUC OSL Middleware 36

Building Network Embedded
Systems

• An exact solution is not always necessary
– Particularly in sensor network applications

• An exact solution is not always of our best interest.
– Late messages are often useless.
– They may be even adverse.

• Get a rough estimate first, then refine the answer.

• The quality of approximation increases with time.

Jan 7, 2003 UIUC OSL Middleware 37

Global Function Evaluation

Evaluate a function which is dependent both on the
state of a node in the network and time.

Issues
• Scalability

 e.g., 105 nodes ⇒ (at least) ~105 messages ⇒ congestion

• Timeliness in response and other real-time constraints
– unpredictable propagation delays

• Reliability/dependability
– unreliable communication channels

Approach
• Use Approximation!

Jan 7, 2003 UIUC OSL Middleware 38

 Observations on Approximate GFE

• Unless an exact answer is required, reliable
communication protocols too expensive.

• Early estimates alleviate some real-time concerns.

• Scalability issues:

– Prolong data aggregation phase to alleviate
congestion.

– Zoom in on interesting portions of the network.

• Results can be analyzed using a probabilistic model.

Jan 7, 2003 UIUC OSL Middleware 39

Approximate GFE

• – function of interest
S = global state t = time

• – quality of approximation
 = network conditions, # of nodes, etc.

• Some approximation techniques are
independent of F.

),(txA
x

),(tSF

Jan 7, 2003 UIUC OSL Middleware 40

Example GFE:
Locating a Mobile Target

• Discover and extrapolate the path of an
evader moving (linearly) through a sensor
grid.

• F(S,t): Ax + By = 0 with global state S and
time t.

• The quality of approximation depends on
– The number of sensor readings
– The accuracy/consistency of sensor

readings

Jan 7, 2003 UIUC OSL Middleware 41

Prototype GFE Node Architecture

Application

 Data
Aggregation

Messaging
 Layer

Spanning Tree
Maintenance

Middleware layer

Jan 7, 2003 UIUC OSL Middleware 42

Application module

• Implements application
dependent functionality:

– Sensor reading

– Data processing

• Customizes data
aggregation functionality

Application

Messaging
Layer

Spanning Tree
Maintenance

Data
Aggregation

Jan 7, 2003 UIUC OSL Middleware 43

Aggregation Module

• Provides services for:

– Storing a message

– Application-assisted message
aggregation

– Rate-controlled message
transmission

• Alleviates congestion

• Enables reduced power
consumption

• Enforces stabilization policies:

– Control the age of messages
accepted

– Control local congestion

Application

Messaging
Layer

Spanning Tree
Maintenance

Data
Aggregation

Jan 7, 2003 UIUC OSL Middleware 44

Spanning Tree Module
• Periodically broadcasts

heartbeats:
– construct spanning tree
– prune dead nodes
– control topology

• Reduces interference
with application
messages
– common messaging

layer allows sending tree
messages during idle
intervals

Application

Messaging
Layer

Spanning Tree
Maintenance

Data
Aggregation

Jan 7, 2003 UIUC OSL Middleware 45

Approximating Movement

1. Monitoring motes know their
location

• Currently hard-coded
• Will be computed dynamically

2. Time synchronization available
• Currently primitive, coarse grain

time synchronization.
• Will use an accurate time

synchronization which helps
synchronize intervals of low
power operation.

Jan 7, 2003 UIUC OSL Middleware 46

Measure of Approximation

• Use slope of the line as the measure of
correctness of approximation
– Scalability through piece-wise linear construction

of line (introduce memory loss)

• Approximation defined as difference between
measured slope and real slope
– Expressed as a percentage

• Take real slope to be the last estimate of the
slope
– Best solution given all available data

Jan 7, 2003 UIUC OSL Middleware 47

Approximation Error vs. Time

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

30 50 70 90 110 130

Time

A
p

p
ro

xi
m

at
io

n
 E

rr
o

r

Jan 7, 2003 UIUC OSL Middleware 48

Summary
• Middleware is ripe for formal

specification and analysis.

• TLAM is a semantic framework for
specifying and reasoning about
middleware services

• Probabilistic models are required for
network embedded systems
–Statistical approximations

Jan 7, 2003 UIUC OSL Middleware 49

Future Directions

• Formal Models for Middleware extending
Two-Level Actor Semantics:
– Probabilistic

– Distributed Time

– Hybrid

• Provide formal definition for middleware

• Study network embedded systems
example applications

