
Three-tier Software Replication

Roberto Baldoni

University of Rome �La Sapienza�

Dipartimento di Informatica e Sistemistica

baldoni@dis.uniroma1.it

43rd Meeting of IFIP Working Group 10.4

Sal � Cape Verde 4-7 Jan. 2003

The Problem

 �How to Increase the availability of a service ensuring
strong replica consistency when clients and server
replicas are deployed over the big Internet?�

Technique:

 Software replication

System Model:

 Crash failures, reliable channels

Motivation 3T architecture IRL

The technique: Software Replication

To maintain strong replica consistency (linearizability), it
suffices:

� Atomic updates
� Ordering

For example, Active replication
� Replicas must be deterministic
� All replicas process the same sequence of requests before

failing (agreement problem)

Replica1

Replica2

Client1
Client2

Compute(req1)

Compute(req1) Compute(req2)

req2req1

Compute(req2)

2Tier (2T) Replication

� The replication logic (RL) is tightly coupled with replicas

� A wide set of instruments (group toolkits) is available to
implement RL

r1

r2

r3

c1

c2

c3

RL

RL

RL

RL r1

The replica is in charge of
�Request ordering
(algorithms
implemented by RL)

�Ordered Request execution

Communication infrastructure

Big Problem in WAN (the big Internet): instability of the underlying system

Implementing 2T Replication

C
R1

R2

R3

Agreement
Protocol

A single �slow� processor or
channel can slow down the
whole protocol delaying the
reply to the client

Non-timely period %

Availability
(Thput)

Lowly Available
despite replication

Highly AvailableBirman (SPE99) points out
problems of group
communication in presence
of asynchrony sources

Communication
 Infrastructure

This injects asynchrony in the system causing instability
(i.e., non-timely) periods

Non-timely Behavior
Safe&¬Live

Timely Behavior
Safe&Live

Timely Behavior
Safe&Live

Agreement requires Partial Synchrony

� The system alternates between timely and
non-timely periods

Solving agreement problems require algorithms:
1. Always guarantee safety
2. Liveness is guaranteed during timely periods:

Looking at the big Internet
� Internet is highly unavailable (99,9% or 99,99%)

� Prevent selected pairs of host to communicate about 1,2% of
the time [Dahlin-Bharat-Gao-Nayate Trans. on Netw.]

� Agreement protocols run very slowly [Bakr-Keidar
PODC2002]

� This is perceived at end-to-end as unpredictable
message transfer delays

� This causes non-timely periods

� In a 2T replication scheme, replicas continuosly loop
in getting agreement

Looking at the big Internet

existing solutions to software replication face instability
� by weakening consistency guarantees, e.g.:

� Eventual consistency
� Partitionable groups, IceCube, Bayou, Lazy Replication, DNS etc.

� Client can receive incorrect results wrt linearizability

� Probabilistic guarantees (e.g. Bimodal multicast, epidemic
diffusion etc.)

� by proposing efficent implementations aimed at improving
the resiliency to instability periods

� E.g. Moshe, spread

Looking at the Big Internet

� service�s availability mainly depends on the
percentage of timely periods experienced by the
system (i.e., on the coverage of partial synchrony
assumption)

timelytimely

Highly Available service

te.g., LAN, TCB

High coverage system

�Run critical tasks (e.g. Agreement) on a system with high
coverage of partial synchrony assumption (e.g. a LAN)

non-timely timelytimely tInternet

Lowly Available serviceLow coverage system

3Tier Replication

� Run agreement protocols efficiently in a middletier under high
coverage guarantees (e.g., a LAN)

� The middle-tier propagates clients� requests attaching the
information necessary to each replica to ensure strong replica
consistency without extra coordination

Replication
Logic

c1

c2

c3

r1

r2

r3

Low coverage system
High coverage system

Middle-Tier

 �How to Increase the availability of a service ensuring
strong replica consistency when clients and server
replicas are deployed over the big Internet?�

3Tier Replication

Middletier entities have to:
1. Assign a sequence number to each replica

2. reliable delivery of each request to replicas

1. Each Replica has to:
1. Ensuring the ordered request execution (similar to a reliable FIFO

channel)

2. Send the result to the client

Replication
Logic

c1

c2

c3

r1

r2

r3

Low coverage system
High coverage system

Middle-Tier

 �How to Increase the availability of a service ensuring
strong replica consistency when clients and server
replicas are deployed over the big Internet?�

A similar approach was adopted by
Frolund-Guerraoui in the context of

transactional systems

A similar approach was adopted by
Frolund-Guerraoui in the context of

transactional systems

3T Software Replication
Active/passive/semipassive vs determinism/non-
determinism of replicas

assume to tolerate f replicas failures, If replicas
are deterministic, the middle-tier has to:

1. Take a #seq for the request
2. Forward the request to f+1 replicas
3. waits for the first result before forwarding the result to the client
4. Update the remaining n-(f+1) replicas

Replication
Logic

c1

c2

c3

r1

r2

r3
Middle-Tier

3T Software Replication
Active/passive/semipassive vs determinism/non-
determinism of replicas

assume to tolerate f replicas failures, If replicas
are non-deterministic, the middle-tier has to:

1. Take a #seq for the request
2. Forward the request to f+1 replicas
3. waits for the first result before forwarding the result to the client
4. Update the remaining n-1 replicas

Replication
Logic

c1

c2

c3

r1

r2

r3
Middle-Tier

3T implemented architecture (IRL)

c1
c2

r1

r2

r3

<,op2>

<1,op1>,<2,op2>Get a #seq

<op1>

<op1>

<op1>

<,op2>

<op2>

<,op2>

Middle-tier

Get a #seq

�Middle-tier
�All middle-tier replicas can accept client requests concurrently to
maximize availability
�Request ordering is based on a distributed fault-tolerant
sequencer service

�Server Replicas
�Deterministic
�f= n-1

<1,op1>

<op1>

Protocol Overview

Client
tier

C1

C2

end-tier
replica

middle-tier
replica

middle-tier
replica

middle-tier
replica

end-tier
replica

end-tier
replica

req1

req2

<1,req1>

<1,req1>,<2,req2>

<1,rep1>

<2,rep2>

<1,r
ep1>

<2,rep2>

sequencer

sequencer

sequencer

Sequencer overview

� Middle-tier replicas guarantee reliable delivery
of client requests ordered by the sequencer.

� Sequencer service guarantees
� each client request is assigned to at most one

sequence number

� no two client requests have the same sequence
number

� sequence numbers are consecutive (no �holes�)

� The sequencer encapsulates the agreement
problem isolating the need of high coverage

middle-tier
replica

middle-tier
replica

middle-tier
replica

sequencer

sequencer

sequencer

Sequencer overview

Choosing the right total order multicast primitive

...... very difficult task

Property required by the sequencer:

Uniform total order with prefix order informally

�Each non-correct process delivers the same
sequence of messages of a correct process
till it crashes�

Implemented by Spread and Javagroups

middle-tier
replica

middle-tier
replica

middle-tier
replica

sequencer

sequencer

sequencer

nSequencer Performance study

� #c <= #R
� IRL implementation is based on spread group

toolkit

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 C
L

a
te

n
z
a

 d
e

l
c

li
e

n
t

(m
s

e
c

)

R=2 R=3 R=4 R=5

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 C

L
a

te
n

z
a

 d
e

l
c

li
e

n
t

(m
s

e
c

)

R=2 R=3 R=4 R=5

Spread JavaGroups

Client LatencyClient Latency

Extracted from a 2T replication performance study

Run with failures

req1=<reqid1,op1>

<1,op1>

GetSeq(req1)=1

req2=<reqid2,op2>

compute(op1)

<1,res1>

compute(op1)

GetSeq(req2)=2

GetReq(1)= req1

<1,op1>,<2,op2>

rep2=<reqid2,res2>

<2,res2>

compute(op1) compute(op2)

c1

c2

h1

h2

h3

r1

r2

r3

req2=<reqid2,op2>

Invoke(op1)

Invoke(op2)

On the failure detection

� Clients implements a simple retransmission
protocol

� Middletier embeds the group toolkit failure
detection system

� middletier implements a simple retransmission
protocol

Replication
Logic

c1

c2

c3

r1

r2

r3

Low coverage system

Middle-Tier

Optimizations

� Packing requests sent to an end-tier replicas into a
message

� Reducing the message size by exploiting the end-tier
replicas reply

� Client invocation semantic

� Bounding the size of the memory used by the sequencer

Replication
Logic

c1

c2

c3

r1

r2

r3

Low coverage system

Middle-Tier

3Tier Replication

Advantages
� Loose client and replica coupling

� Clients and replicas are loosely coupled i.e., they do not interact among
them

� Decoupling of service availability from data survivability
� Data stored in replicas remain available despite middle-tier overall

failures (which prevent service availability)
� Middle-tier extensibility

� The introduction of further functionality e.g., load balancing, and
tolerating malicious fault models, is simplified

Drawbacks
� An additional hop in each client/server interaction

� Service availability depends on the availability of the middle-tier

Replication
Logic

c1

c2

c3

r1

r2

r3

Low coverage system

Middle-Tier

On Service availability

Replication
Logic

c1

c2

c3

r1

r2

r3

Low coverage system
High coverage system

Middle-Tier

r1

r2

r3

c1

c2

c3

RL

RL

RL

Communication infrastructure

�centralized� vs �distributed�

Interoperable Replication Logic
� Software infrastructure allowing to enhance the availability of deterministic

CORBA objects
� Test-bed platform for three-tier replication protocols

� Unifies benefits from CORBA and 3T replication
� Interoperability

� All the interactions among clients, middle-tier and replicas occur through IIOP
� This allows interactions of CORBA objects running on different ORBs/OSs

� Portability
� Current version runs on Orbix, TAO, Orbacus

� Complies to the Fault-Tolerant CORBA standard
� [see also SRDS2002,SPE]

Object Request Broker

Client ObjObjObj

RM

RM

RM

FN

FN

FN

OGH

OGH

OGHClient ObjObjObj

Stateful
Object Group

ObjObjObj ObjObjObj

Stateless
Object Group

Client-tier Middle-tier End-tier

Asynchronous AsynchronousHigh Coverage

IRLArchitecture

Object Group Handler

Sequencer

Spread

ARH Member
Handler

Client
Handler

IRGW

Oggetto

Object Request Broker

ORGW

Client

client/server Interaction in IRL

C1

C2

R1

R2

R3

O
b

je
ct

 R
eq

u
es

t
B

ro
ke

r

O
b

je
ct

 R
eq

u
es

t
B

ro
ke

r

S
pr

ea
d

OGH1

Sequencer

OGH2

Sequencer

OGH3

Sequencer

Performance

Results
� Average latency increases

by 3% per end-tier replica
(5,5msec->6,5msec) using
point-to-point (TCP)
connections

� thput poorly reduces due
to new end-tier replicas

Setting:

� 100Mbit SW-Ethernet LAN

� 4 clients

� 2 middle-tier replicas

� # of end-tier replicas
varies from 2 to 8

0

2

4

6

8

2 4 6 8 R

cl
ie

n
t

la
te

n
cy

 (
m

se
c)

0

50

100

150

200

250

300

2 4 6 8 R

re
qu

es
ts

/s
ec

End-tier replicas End-tier replicas

Prototype: C++, Orbacus, Maestro/Ensemble in the middle-tier
to implement sequencer (uses hwmulticast in the middle-tier)

Latency Throughput

Performance

Results
� Average latency increases

by 3,5% per middle-tier
replica
(5,5msec->7 msec)

� Similar to the previous
case due to the use of hw-
multicast in the middle-tier

Setting:

� 100Mbit SW-Ethernet LAN

� 4 clients

� # of middle-tier replicas
varies from 2 to 8

� 2 end-tier replicas

0

2

4

6

8

2 4 6 8 M

cl
ie

nt
 la

te
nc

y
(m

se
c)

0

50

100

150

200

250

300

2 4 6 8 M

re
qu

es
ts

/s
ec

Middle-tier replicasMiddle-tier replicas

Latency Throughput

Concluding Remarks
� Three-tier replication

+ Allows to deploy replicas in WANs
� while enforcing strong replica consistency
� avoiding delays due to replica asynchrony

+ Confines in Sequencer the need for high coverage to get high
availability

+ Avoids replicas to run complex synchronization protocols,
which can be costly in WANs

� Service availability bound to middle-tier

� The Interoperable Replication Logic
o Software infrastructure exploiting 3T replication to enhance

CORBA objects with high availability
o Demonstrates feasibility of 3TAR

� Future and ongoing work
o Support of nondeterministic replicas
o Nested invocations
o Replication Management and dynamic groups

Implementation Issues
� Most of existing solutions to service high-

availability with strong consistency requirements
run over workstation clusters, i.e.:
� a set of co-located workstation

� interconnected by a local area network (LAN)

� ensuring high coverage of partial synchrony assumptions

� replication logic (RL) exploits group communications

RL

Replica

Replica process

RL

Replica

Replica process

RL

Replica

Replica process

RL

Client

Client process

OS/Platform OS/Platform OS/Platform OS/Platform

Network
Platform

Client-tier End-tier

System Model
Message-passing

asynchronous
distributed system
� No upper bounds on

message transfer
and process
scheduling delays

� Fits well our
environment, i.e., a
set of nodes
distributed on Wide
Area Network (WAN)
where we have
unpredictable user
and network load

CLIENT

REPLICAS

Failure-free Run
c1

c2

req1=<reqid1,op1>

h1

h2

h3

r1

r2

r3

<1,op1>

GetSeq(req1)=1

req2=<reqid2,op2>

rep1=<reqid1,res1>

compute(op1)

<1,res1>

compute(op1)

<1,op1>,<2,op2>

rep2=<reqid2,res2>

compute(op2)

compute(op2)

<2,res2>

compute(op1) compute(op2)

Invoke(op1)

Invoke(op2)

GetSeq(req2)=2

GetReq(1)= req1

