Three-tier Software Replication

Roberto Baldoni

University of Rome “La Sapienza”
Dipartimento di Informatica e Sistemistica

baldoni@dis.uniromal.it

43rd Meeting of IFIP Working Group 10.4
Sal - Cape Verde 4-7 Jan. 2003

The Problem

“How to Increase the availability of a service ensuring
strong replica consistency when clients and server
replicas are deployed over the big Internet?”

Technique:
Software replication
System Model:

Crash failures, reliable channels

3T architecture

The technique: Software Replication

To maintain strong replica consistency (linearizability), it

suffices:

Atomic updates
Ordering

For example, Active replication

Replicas must be deterministic

All replicas process the same sequence of requests before
failing (agreement problem)

Client1 A e A >

Client2 /
Replica1 [Compute(reqt) gg Compute(reqz) | /

>
/f’

Replica2 Compute(req 1) [{Compute(req2) [—>

S—— -

2Tier (2T) Replication

— The replication logic (RL) is tightly coupled with replicas

— A wide set of instruments (group toolkits) is available to
implement RL

Communication infrastructure \ n

The replica is in charge of
*Request ordering
(algorithms

implemented by RL)

n / *Ordered Request execution

Big Problem in WAN (the big Internet): instability of the underlying system

Implementing 2T Replication

Communication
Infrastructure

A single “slow” processor or
channel can slow down the

whole protocol delaying the
reply to the client

greement
Protocol

This injects asynchrony in the system causing instability

(i.e., non-timely) periods Availability

(Thput)

A

Birman (SPE99) points out [Highly Available

problems of group

: : : Lowly Available
communication in presence despite replication
of asynchrony sources

>

Non-timely period %

Agreement requires Partial Synchrony

* The system alternates between timely and
non-timely periods

N =7 AN

NNV N T NGOV
Timely Behavior | Non-timely Behavior Timely Behavior

Safe&Live Safe&-Live Safe&Live

Solving agreement problems require algorithms:
1. Always guarantee safety
2.Liveness is guaranteed during timely periods:

Looking at the big Internet

— Internet is highly unavailable (99,9% or 99,99%)

» Prevent selected pairs of host to communicate about 1,2% of
the time [Dahlin-Bharat-Gao-Nayate Trans. on Netw.]

« Agreement protocols run very slowly [Bakr-Keidar
PODC2002]

— This is perceived at end-to-end as unpredictable
message transfer delays

— This causes non-timely periods

— In a 2T replication scheme, replicas continuosly loop
In getting agreement

Looking at the big Internet

existing solutions to software replication face instability

— by weakening consistency guarantees, e.g.:

« Eventual consistency
— Partitionable groups, IceCube, Bayou, Lazy Replication, DNS etc.
— Client can receive incorrect results wrt linearizability

» Probabilistic guarantees (e.g. Bimodal multicast, epidemic
diffusion etc.)

— by proposing efficent implementations aimed at improving
the resiliency to instability periods
* E.g. Moshe, spread

Looking at the Big Internet

* service’s availability mainly depends on the
percentage of timely periods experienced by the
system (i.e., on the coverage of partial synchrony

assumption)
High coverage system » Highly Available service
e.g., LAN, TCB timely timely t)
Low coverage system » Lowly Available service
Internet timely non-timely timely t)

*Run critical tasks (e.g. Agreement) on a system with high
coverage of partial synchrony assumption (e.g. a LAN)

3Tier Replication

“How to Increase the availability of a service ensuring
strong replica consistency when clients and server
replicas are deployed over the big Internet?”

>

K Low coverage system
H|gh coverage system

K \ Mlddle-Tler / J

— Run agreement protocols efficiently in a middletier under high
coverage guarantees (e.g., a LAN)

— The middle-tier propagates clients’ requests attaching the
information necessary to each replica to ensure strong replica
consistency without extra coordination

3Tier Replication

“How to Increase the availability of a service ensuring
strong replica consistency when clients and server
replicas are deployed over the big Internet?”

K Low coverage system

7 Replication

‘ Logic

\ A similar approach was adopted by
Frolund-Guerraoui in the context of
transactional systems

Middletier entities have to:
1. Assign a sequence number to each replica
2. reliable delivery of each request to replicas
1. Each Replica has to:

1. Ensuring the ordered request execution (similar to a reliable FIFO
channel)

2. Send the result to the client

3T Software Replication

Active/passive/semipassive vs determinism/non-
determinism of replicas

., Replication(.

assume to tolerate f replicas failures, If replicas
are| deterministic |the middle-tier has to:

1. Take a #seq for the request

2. Forward the request to f+1 replicas

3. waits for the first result before forwarding the result to the client
4. Update the remaining n-(f+1) replicas

3T Software Replication

Active/passive/semipassive vs determinism/non-
determinism of replicas

., Replication(.

assume to tolerate rreplicas failures, If replicas
ar¢ non-deterministic, fhe middle-tier has to:
1. Take a #seq for the request

2. Forward the request to f+1 replicas
vaits for the first re before forwarding the result to the client

4. Update the remaining n-1 replicas

3T implemented architecture (IRL)

Middle-tier
—All middle-tier replicas can accept client requests concurrently to
maximize availability

—Request ordering is based on a distributed fault-tolerant
sequencer service

«Server Replicas
—Deterministic

—f= n-1 c, l
Middle-tier

<,0p,>

Get a #seq

Protocol Overview

middle-tie
replica

<1, reqgl> end-tier
replica

<l,repl>

g
tier P
rqu
- S
<2, repas end-tier

, replica
<l,reql>,<2,reqg2>

‘\...-'/

<2,rep2>

Sequencer overview

Middle-tier replicas guarantee reliable delivery
of client requests ordered by the sequencer.

Sequencer service guarantees

— each client request is assigned to at most one
sequence number

— no two client requests have the same sequence
number

— sequence numbers are consecutive (no “holes”)

The sequencer encapsulates the agreement
problem isolating the need of high coverage

middle-tie
replica

middle-tie
replica

middle-tie
replica

Sequencer overview

Choosing the right total order multicast primitive
...... very difficult task
Property required by the sequencer:

Uniform total order with prefix order informally

“Each non-correct process delivers the same
sequence of messages of a correct process
till it crashes”™

Implemented by Spread and Javagroups

middle-tie
replica

N—

middle-tie
replica

/

\ .

middle-tie
replica

———d

nSequencer Performance study

Extracted from a 2T replication performance study

Client Latency

Client Latency

16

14

)
o

-
o

enza del client (msec

Lat
o N S o oo

[4-R=2 B R=3 A R=4 @ R=5

Spread

.

—_

600

500

|4 R=2 B R=3 & R=4 ® R=5]

JavaGroups ‘

oo 9o o o

9
£400 | A— 4 A A

-

[
T

©
g 200 -
Q

-
(]
-

© 300 -

100

0

toolkit

e #c <=#R
* |RL implementation is based on spread group

Run with failures

C, Invoke(op,)

req,=<req,;;,0p>

Invoke(op,)

req,=<req,;,,0pP,>

/

5 |

h 14 GetSeq(req,)=1

req,=<req,;,,0pP,> rep,=<req,,,es,>

h,

hy

B GetSeq(req,)=2

S %\ 4 GetReq(1)= req, <2,resz>T
— |

_/ V

<1,0p.>

<1 :Op1 >1<2’Op2>

\

r Y compute(op,)
ry l compute(op,) %

compute(op,) compute(op,)

On the failure detection

* Clients implements a simple retransmission
protocol

« Middletier embeds the group toolkit failure
detection system

* middletier immplements a simple retransmission
protocol

Optimizations

« Packing requests sent to an end-tier replicas into a
message

* Reducing the message size by exploiting the end-tier
replicas reply

 Client invocation semantic

* Bounding the size of the memory used by the sequencer

3Tier Replication

Low coverage system

Advantages

— Loose client and replica coupling

» Clients and replicas are loosely coupled i.e., they do not interact among
them

— Decoupling of service availability from data survivability

» Data stored in replicas remain available despite middle-tier overall
failures (which prevent service availability)

— Middle-tier extensibility

« The introduction of further functionality e.g., load balancing, and
tolerating malicious fault models, is simplified

Drawbacks
— An additional hop in each client/server interaction

— Service availability depends on the availability of the middle-tier

On Service availabllity

“centralized” vs “distributed”

K Low coverage system

H|gh coverage system

\ Mlddle Tler/

Interoperable Replication Logic

Software infrastructure allowing to enhance the availability of deterministic

CORBA objects

— Test-bed platform for three-tier replication protocols
Unifies benefits from CORBA and 3T replication

— Interoperability

» All the interactions among clients, middle-tier and replicas occur through IIOP
» This allows interactions of CORBA objects running on different ORBs/OSs

— Portability

* Current version runs on Orbix, TAO, Orbacus

Complies to the Fault-Tolerant CORBA standard

[see also SRDS2002,SPE]

Client-tier

Object Request Broker

IRLArchitecture

ORGW

-

Object Group Handler

Client
Handler

Member
Handler

Object Request Broker

i [Sequencer 1 ,’

client/server Interaction in IRL

S S
Q Q
= X
O Q
| | S
11] 11]
wd wd
N)
Q)
- N
(o8 (&)
Q Q
14 14
wid -

(&) I
2 o
_— o]
o o

Sequencer ¢ >

Performance

Prototype: C++, Orbacus, Maestro/Ensemble in the middle-tier
to implement sequencer (uses hwmulticast in the middle-tier)

client latency (msec)

[oe]

]

N

N

o

Latency

/*//‘

2

6

End-tieg replices

Setting:
100Mbit SW-Ethernet LAN

4 clients

2 middle-tier replicas
of end-tier replicas

varies from 2to 8

300

Throughput

250

N
o
o

150 ’\‘\’\0

requests/sec

100

50

6

| End-tigr replicas

Results

* Average latency increases
by 3% per end-tier replica
(5,9msec->6,5msec) using
point-to-point (TCP)

connections

« thput poorly reduces due

to new end-tier replicas

Performance

100Mbit SW-Ethernet LAN
4 clients

of middle-tier replicas
varies from 2 to 8

2 end-tier replicas

Latency Throughput

300
'g e 250
E - 8 200
) 2 0\,\‘\
3 ® 150 -
= = 100
5 2
G 50

5 4 6 ¢ Middiqgjier replicas 0 5 4 5 Middle-tieréreplicas
Setting: Results

Average latency increases
by 3,5% per middle-tier
replica

(5,5msec->7 msec)
Similar to the previous
case due to the use of hw-
multicast in the middle-tier

Concluding Remarks

* Three-tier replication

+ Allows to deploy replicas in WANs
« while enforcing strong replica consistency
 avoiding delays due to replica asynchrony
+ Confines in Sequencer the need for high coverage to get high
availability
+ Avoids replicas to run complex synchronization protocols,
which can be costly in WANSs

— Service availability bound to middle-tier

* The Interoperable Replication Logic

o Software infrastructure exploiting 3T replication to enhance
CORBA objects with high availability

o Demonstrates feasibility of 3STAR
» Future and ongoing work
o Support of nondeterministic replicas

o Nested invocations
o0 Replication Management and dynamic groups

Implementation Issues

« Most of existing solutions to service high-
availability with strong consistency requirements

run over workstation clusters, i.e.:
— a set of co-located workstation

A

— interconnected by a local area network (LAN)

— ensuring high coverage of partial synchrony assumptions

— replication logic (RL) exploits group communications

—_—————ee e e e — o,

Client-tier

Client process

Gert |
R

OS/Platform

End-tier

Replica process

(Replia|
R

Replica process

(Replie|
R

Replica process

(Replie|
R

OS/Platform

OS/Platform

OS/Platform

System Model

Message-passing

— No upper bounds on

asynchronous ,
distributed system f:} W cLIENT

message transfer >
and process
scheduling delays

g
Fits well our
environment, i.e., a
set of nodes {7
distributed on Wide \ -

Area Network (WAN
where we have
unpredictable user
and network load

!
1

Failure-free Run

C, Invoke(op,) | >

req,=<req,,;,0p,> rep,=<req,,;,res,;>
C, Invoke(op,)

req,=<req,;,,0p,> rep,=<req,,,es,>

h 1{ GetSeq(req,)=1 * \ \ >
h2 h &‘ GetSeq(req,)=2 / >
> S\\ \ GetReq(1)= req, \ T
h. / \ >
Uv
<1,op1> <1,op1>,<2,op2>
<1.res,> <2,res,>
r Y compute(op,) \ x | compute(op,) I—)
ry l compute(op,) \ | compute(op,) ——— >
Iy N compute(op,) compute(op,) (>

