
Abstractions for indulgent
distributed computing

R. Guerraoui
Distributed Programming Laboratory

Swiss Federal Institute of Technology in Lausanne (EPFL)

1.There is no distributed computing
middleware

2. It is challenging to devise one

3. Here is the story of our quest

Summary

Roadmap of the talk

(1) Definitions

(2) Problem

(3) Proposition

Definition 1
A middleware is (1) a set of abstractions that

implements a wide class of computing tasks
and (2) a set of associated abstraction
mechanisms

Examples of abstractions: Set, list, record;
semaphore, monitor

Examples of abstraction mechanisms:
encapsulation, inheritance, interception

A middleware for distributed computing
is (1) a set of abstractions that solves a
wide class of distributed computing
tasks and (2) a set of associated
abstracting mechanisms

Definition 2

A distributed computing task is one
where several processes cooperate to
achieve some common goal, despite
the failure of a subset of the processes

Definition 3

Distributed computing task T: processes
exchange initial inputs to agree on one
common output, despite crashes of some of
the processes

Validity: the output is an input

Agreement: there is at most one output

Termination: there is at least one output

Example

There is no middleware for
distributed computing

Claim

Notes

Note 1. What has been called middleware so far
is based on RPC-like centralized
programming abstractions

Note 2. A lot of effort has been devoted to
abstraction mechanisms but very little to
the actual abstractions (Choices, Cactus, Garf
and Bast, QuO,..)

Roadmap of the talk

(1) Definitions

(2) Problem

(3) Proposition

Problem

Devise a set X of abstractions for solving
distributed computing tasks

Problem (cont�d)

X must be minimal and the abstractions
be overhead-free and indulgent

Overhead-freedom
1. Resilience

There should not be any solution to T using
strictly weaker assumptions than those
needed for X

Example: X should not assume f+2 correct
processes if some implementation of T
assumes only f+1 correct processes

No ad-hoc solution that bypasses X to solve T
can be more performant than an X-based
solution to T (with the same resilience)

Example: X should not inherently lead to
solutions to T with 2n messages if some
implementation of T needs only n messages

Overhead-freedom
2. Performance

Network

X

Network

Ad-hoc solution to T
bypassing X

Solution to T
based on X

Overhead-freedom

Problem

Devise a set X of abstractions for solving
distributed computing tasks

X must be minimal and the abstractions
be overhead-free and indulgent

 Even if X does not comply with its
specification, the safety of T is ensured

Indulgence

X

Solution to T
based on X (safety
and liveness)

Indulgence

X

Solution to T
based on X (safety)

Processes exchange initial inputs to agree on
one common output, despite crashes of some
of the processes

Validity: the output is an input

Agreement: there is at most one ouput

Termination: there is at least one output

Example (task T)

Why indulgence?

Because

 « When they continued asking him, he lifted
up himself, and said unto to them, He that
is without sin among you, let him first
cast a stone at her » John 8:7(not Lennon)

Why liveness?

Because

« While there is life there is hope » Cicero

Roadmap of the talk

(1) Definitions

(2) Problem

(3) Proposition

Proposition: X = {S,L}

S and L are the abstractions

S : A reliable form of storage

L : A reliable form of leader election

The S abstraction
One operation s() : s(value) -> {value�,abort}

Two properties:

There can be at most one result ≠ abort and
this must be an argument of s()

There must be a result and the result is abort
only if two processes concurrently invoke s()

The S abstraction

p1

p2

p3
s(E) -> abort

s(E) -> abort s(E) -> E

s(D) -> E

Implementing S
S can be implemented in an asynchronous

system with a majority of correct processes

p1

p2

p3

s(D) abort

aborts(E)

s(D) D

s(E) D

The L abstraction

One operation: l() -> id

Property:

Eventually, the identity of one correct process is
permanently returned

The L abstraction

p1

p2

p3

 l()->{p1}

 l()-> {p2}

 l() ->{p1}

 l() ->{p1}

 l() ->{p2}

 l()-> {p2}

Implementing L
L can be implemented in an eventually

synchronous system

p1

p2

p3

 l() {p1}

 l() {p2}

 l() {p1}

 l() {p1}

 l() {p2}

 l() {p2}

Processes exchange initial inputs to agree on
one common output, despite crashes of some
of the processes

Validity: the output is an input

Agreement: there is at most one ouput

Termination: there is at least one output

Remember our task T

Solution to T using X

Every process proposes an input and executes:

while true do

if l() = self then

if s(input) = v ≠ abort then

return v

Indulgence

Any solution to T based on L is inherently
indulgent (Gue:PODC00)

Overhead-freedom
Resilience
(1)L is minimal to implement T; (2) Using L, a

correct majority (i.e., S) is needed to
implement T (CT:PODC91; CHT:PODC92)

Performance
There is no indulgent solution to T that is more

performant than the one using X
(DFGP:DISC02; DG:PODC02)

Claims
S and L are convenient abstractions for

distributed computing;

Not only for T and

Not only in a crash-stop model

(FG:DSN00;FG:PODC00;BDFG:DC03)

The fun is still ahead

What if we consider malicious processes?

What about timing issues?

What abstraction mechanisms?

