
WG 10.4 - Jan. 2003 1

Asynchronous Middleware for Achieving

Adaptivity and Dependability

Gérard Le Lann
INRIA

ADEPT Project

Gerard.Le_Lann@inria.fr

WG 10.4 - Jan. 2003 2

1. Prolegomena (3 � 9)

2. On middleware and computational models (10 � 25)

3. Asynchronous real-time: the �late binding� principle (26 - 33)

4. Conclusions (34)

WG 10.4 - Jan. 2003 Prolegomena 3

1. Prolegomena1. Prolegomena

Application problems of interest? Those such that properties P required

at M/W level are some combination of Safety (SafeP), Liveness (LiveP),

Timeliness (TimeP), Dependability (DepP). Furthermore, �predictions

before running� are mandatory.

 Real (application) problem RΠ Problem Π (computing systems,

 computer science/engineering, �) at M/W level
◊ M/W design solution ∆ + proofs

◊ Dimensioning of ∆ Implementation of ∆ + COTS

 System S Fielding of S

Notation M stands for design computational model (in Π or in ∆)
M: from pure synchronous to pure asynchronous

WG 10.4 - Jan. 2003 Prolegomena 4

FAIL

FAIL

FAIL

WG 10.4 - Jan. 2003 Prolegomena 5

Problem Π = {assumptions A (+ M); properties P; Cov(P)}

A = �adversary�of S = run-time {system-centric, environmental}
conditions. Typically, A =
� postulated models for {external event arrivals, internal processes,
failures, �},
� postulated bounds on {external �loads�, densities of failure
occurrence, of intrusion occurrence, �}, wcet�s (one per process), �

M is optional. May be chosen along with ∆.

Cov(P) = coverage of P under A (acceptable lower bound).

Coverage of α = likelihood or probability (α not violated at run-time).

For example, with safety-critical systems, Cov(P) ≈ 1 � 10-7.

WG 10.4 - Jan. 2003 Prolegomena 6

System abstraction levels (simplified view)

ENVIRONMENT
! Assumptions A

APPLICATIONS �

M/W m !!!! Properties P, Cov(P)

OS/MONITORS �

�/� k
�/� �

END-TO-END COMs c
�/�

NETWORK AND I/O 2

BASIC H/W (PHYSICS) 1

WG 10.4 - Jan. 2003 Prolegomena 7

Design solution ∆ for Π =
specification of {[modules] ∪ [architecture] ∪ [distributed algorithms]}

Modules, algorithms, perform operations (comp/comm steps).

Any ∆ rests on design assumptions (DA), such as, e.g., microprocessors,

light speed, network reliability, �, + some model M
(possibly stated in Π) that serves as a design model.

M encompasses abstraction levels from 1 (basic H/W) to m (M/W level).

Let C(α) stand for the highest achievable Cov(α).

Two necessary conditions for proving that Π is correctly solved are:

C1: C(M) is computable, C2: C(M) > Cov(P).

WG 10.4 - Jan. 2003 Prolegomena 8

MIDDLEWARE ISSUE EXPLORED:MIDDLEWARE ISSUE EXPLORED:

Should M/W aimed at systems/applications of interest be built out Should M/W aimed at systems/applications of interest be built out
of partially/fully synchronous solutions of partially/fully synchronous solutions
 or out of asynchronous solutions? or out of asynchronous solutions?

 Which model Which model M for designing M/W of interest?for designing M/W of interest?

 Computational model Computational model MM ⇔⇔ timing assumptions (TA(timing assumptions (TA(MM))))

TA(M) = postulated upper (lower) bounds for durations/delays of some
operations (successful write in cache-memory, OS or M/W call/service,
send message, propagate signal, sojourn in a waiting queue, �), at some
levels, which bounds are known at design time, and these bounds
hold true from time 0.

WG 10.4 - Jan. 2003 On computational models 9

2. On computational models2. On computational models

M = Pure Asynchronous:
No TA(M) at all postulated at any level ⇒no coverage issue involved.

Unfortunately, many problems in distributed fault-tolerant computing
(P = SafeP + LiveP + DepP) have no deterministic solution in this model.

 ⇒⇒ ��augmentedaugmented�� (pure asynchronous) models (pure asynchronous) models

M = Asynchronous (Async):
pure asynchrony �augmented� with some time-free semantics

 ⇒ M/W algorithmic solutions are time free

WG 10.4 - Jan. 2003 On computational models 10

M = Partially Synchronous (ParSync):

pure asynchrony �augmented� with TA(M) stated at some levels � level

m certainly in our case � for some operations.
These bounds appear in M/W solutions ⇒ some M/W algorithmic

 solutions are time free, others are time dependent

Pure Synchronous (Sync) is a particular case of ParSync:
Sync = TA(M) stated for every level, for every operation. These

bounds appear in M/W solutions (strictly time-dependent solutions).

Note: The TT approach [Kopetz 1998] is a particular case of Sync.

Most delays are assumed to be constant rather than variable � which

eliminates many difficult design issues (see section 3), prima facie.

In fact, these issues must be addressed in order to prove that TT

assumptions are correctly implemented, with coverage > Cov(P).

WG 10.4 - Jan. 2003 On computational models 11

ParSync: e.g., the TA model [Cristian/Fetzer 1999], the TCB approach
[Verissimo/Casimiro/Fetzer 2000]

TA and TCB rest on such variables as δ, which stands for an upper
bound of middleware level (m) end-to-end interprocess message delays,
and δ is �guessed� or �estimated� or assumed.

Async: models considered by many authors (including ourselves in
[Hermant/Le Lann 2002]).

In particular, time-free semantics = Chandra/Toueg�s �unreliable failure
detectors� � FDs [Chandra/Toueg 1991]. Such semantics match �low�
levels, up to the end-to-end coms level (c) typically, and these
semantics are assumed.

WG 10.4 - Jan. 2003 On computational models 12

Recall C1: C(M) is computable, C2: C(M) > Cov(P).

In order to implement any model M (with some computable coverage),

one must prove some TimeP: postulated bounds TA(M) must match

demonstrated bounds T(M) � with some computable coverage � at every

level encompassed by M, to the exception of level 1.

More precisely: One must solve a distributed real-time computing
(DRT) problem � with some computable coverage � at every level
encompassed by M (to the exception of level 1), even if initial Π is not
a DRT problem � no TimeP in Π.

Bad news: Solving a DRT problem is notoriously difficult.

WG 10.4 - Jan. 2003 On computational models 13

What is involved with solving a DRT problem Πk
specified at some level k?

Problem Πk = {assumptions Ak; bk bounds TAk(M); Cov(TAk(M))}

Ak = �adversary�of level k (of S) = run-time {system-centric,
environmental}conditions, derived from upper level (k+1):
� postulated models for {external and internal event arrivals, internal
processes, failures, �} at level k,
� postulated bounds on {externally and internally generated �loads�,
densities of failure occurrence, of intrusion occurrence, �}, wcet�s
(one per process), �, at level k.

Design solution ∆k necessarily includes scheduling algorithm(s)
Sched (e.g. HPF, EDF, SSF, D-Over, �), for waiting queues inevitably
build up � temporarily � in (distributed) systems, at every level.

WG 10.4 - Jan. 2003 On computational models 14

Proofs of (bounds) TAk(M)?

⇒ Conduct schedulability analyses

� Identify worst-case scenarios that can be deployed by Ak in the
presence of ∆k
� Then, establish a computable analytical expression for each of the
bk bounds Tk (a function of variables appearing in Ak, in particular) that
are achievable in the presence of worst-case scenarios.

⇒ Establish feasibility conditions (FC)

∀j, j ∈[1, bk]: Tak,j(M) < Tk,j

Proofs and/or ∆k rest on assumptions
⇒ specifications of adversary Ak-1, of required timeliness
properties TAk-1(M), i.e. specification of DRT problem Πk-1.

WG 10.4 - Jan. 2003 On computational models 15

Schedulability analyses are quite involved (highly combinatorial),
especially with distributed systems

[may explain scarcity of (constructive) publications/results]

For schedulability analyses, see scheduling theory, queuing theory,
(max, +) algebra, constraint programming, combinatorial optimization,
analytical calculus,�

Schedulability analyses rest on simplified models of {systems, software
processes, COTS, �}, on approximated {processor architectures,
internal adversaries, worst-case execution times, contention and/or
queuing phenomena, �}, on �luxurious� assumptions sometimes

 ⇒ computing the coverage of a schedulability analysis
may turn problematic

WG 10.4 - Jan. 2003 On computational models 16

Ideal:Ideal:
� necessary and sufficient FC (N&S FC)
� derived under perfectly accurate assumptions A and DA

⇒ θk,j = tightest values of (correct) time bounds at level k
 (e.g., smallest achievable termination deadlines)

Real:Real:
simplified models are considered, postulated timings may not be
�elementary�, finding N&S FC is NP-hard, hence �simplified�
(sufficient) FC

⇒ Tk,j = some computed bounds for level k

WG 10.4 - Jan. 2003 On computational models 17

Two possible outcomes:

� Optimistic (i.e. incorrect) FCk ⇒ Tk,j < θk,j
⇒ ParSync solutions are incorrect

(SafeP, LiveP are lost, in addition to losing TimeP)

Example with consensus: all messages sent in a round are received in
Tx at most; given that messages may take up to θx, it is impossible
to prove consensus (processes may decide differently, always)

� Pessimistic (i.e. sufficient) FCk ⇒ Tk,j > θk,j

⇒ ParSync solutions are correct, albeit �slow� compared
with (ideally achievable) executions that would be based on θk,j .

WG 10.4 - Jan. 2003 On computational models 18

 Consequences

C3: The smaller the number of levels encompassed by M, the lower
the levels, the most likely it is that C(M) can be computed.

C4: The smaller the number of levels encompassed by M, the lower
the levels, the easier it is to establish N&S FC.

From C4, it follows:

C5: The smaller the number of levels encompassed by M, the lower
the levels:
� the higher the probability that FC are correct (i.e. Cov(M) ≠ 0),
� the smaller distance Tk - θk, whenever FC are correct.

WG 10.4 - Jan. 2003 On computational models 19

Two major differences between ParSync and Async

(1) c < m

(2) The DRT problems involved with ParSync fully depend on Π

⇒ they are not �adversary immune�.
Conversely, the DRT problems involved with Async do not depend
much on Π ⇒ they are �adversary immune�.

 Major difference between TA and TCB

In TA papers, there is no mention that schedulability analyses are
mandatory in order to express and prove δ

⇒ Cov(TA) cannot be computed
⇒ From C1 and C2, it follows that with TA, it is impossible to prove
that initial problem Π is solved.

WG 10.4 - Jan. 2003 On computational models 20

Assertions such as �a system alternates between a system alternates between ��goodgood�� and and ��badbad��

periodsperiods� are just wishes. It may well be that a system designed in the
TA model ends up being always incorrect or mute.

Counter-argument: pick up some �really big� δ (e.g., 1 hour), and that δ

will never be violated!

Wrong!! In the absence of FC, you cannot predict whether system S
will or will not be �overloaded� or entering thrashing �too often�.
Whenever the case, real δ is infinite!!!

WG 10.4 - Jan. 2003 On computational models 21

Major difference nMajor difference n°° 1: levels where DRT problems arise 1: levels where DRT problems arise

APPLICATIONS �

M/W m __________

OS/MONITORS � from 2 to m

�/� k
�/� � with

END-TO-END COMs c ___________
�/� ParSync from 2 to c

 with Async
NETWORK AND I/O 2 ___________ ___________

BASIC H/W (PHYSICS) 1

WG 10.4 - Jan. 2003 On computational models 22

Major difference nMajor difference n°° 2: Immunity to adversary 2: Immunity to adversary

WithWith ParSync ParSync:
� One must start from level m. Indeed, Am � for DRT problem
Πm � is embodied in specification Π, which is defined at level m,

� Bounds TAm(M) are TimePm, i.e. those timeliness properties specified
in Π.

� Bounds TAk(M), k < m, transitively depend on TimePm.

Note: Try to predict TimeP �guaranteed� by OS-level COTS products!
Good luck ☺

WithWith Async Async:
� One must start from level c. Indeed, Ac � for DRT problem
Πc � only partially depends on Am.

� Bounds TAc(M) do not depend on TimePm.

WG 10.4 - Jan. 2003 On computational models 23

This is so for the reason that the set of processes (σ) involved with some
time-free semantics is not in the set of processes specified in initial Π.
IOW, a designer is free to define set σ, as well as to pick up any
scheduling scheme and/or rules for processes in σ.

Luck: Most accurate results regarding FC, with good coverage?
Network-level communication problems (see, e.g., IEEE/ACM Trans.
on Networking). In [Hermant/Le Lann 2002], one shows how to build
Fast FDs � strong or perfect semantics � provably correctly
(schedulability analysis given), out of network level timing assumptions.
Other authors have established similar results for conventional FDs.

Consequences: The DRT problems to be solved in order to The DRT problems to be solved in order to
implementimplement Async Async provably correctly are (significantly) simpler than provably correctly are (significantly) simpler than
those those ��embodiedembodied�� in in ΠΠ, which are those to be solved with, which are those to be solved with ParSync ParSync..

WG 10.4 - Jan. 2003 On computational models 24

CONCLUSION:

 AsyncAsync DOMINATES DOMINATES ParSync ParSync

C3C3 ⇒Regarding computability of C(M), Async dominates ParSync

C5C5 ⇒Regarding (1) achievable values of C(M) or (2) tightness of

demonstrated timeliness bounds T(M) � i.e. system �performance� �

for some given C(M), Async dominates ParSync

Nancy Lynch, 1996: �It is impossible or inefficient to implement the

synchronous model in many types of distributed systems.�

⇒ �Synchronous Distributed� may be an oxymoron!

WG 10.4 - Jan. 2003 On computational models 25

Therefore, whenever problem Π is not a real-time computing problem,

don�t kill yourself:

consider or design consider or design asynchronousasynchronous algorithmic solutions algorithmic solutions

⇒ coverage of SafeP, LiveP, DepP = Cov(Async)

 ⇒ for some problems, coverage issues
(for SafeP, LiveP, DepP) do not arise at all with

 asynchronous solutions � see indulgent algorithms.

 What if Π is a real-time computing problem?

WG 10.4 - Jan. 2003 Late binding 26

 3. Asynchronous real-time: the 3. Asynchronous real-time: the ��late bindinglate binding�� principle principle

Asynchronous Real-Time?Asynchronous Real-Time?

 Timeliness properties achieved (and proven) with some Timeliness properties achieved (and proven) with some

 solution designed in an asynchronous model. solution designed in an asynchronous model.

 Obvious contradiction? TimeP resulting from time-free solutions?

Inevitably, some time between when some problem Π is specified and

when an implemented system-solution S is fielded, there must be a phase
during which schedulability analyses must be conducted, which implies
considering a Sync or a ParSync model.

WG 10.4 - Jan. 2003 Late binding 27

Classical mistake: taking this to mean that M � the design model � has to
be Sync or ParSync ⇒ �early early bindingbinding� of ∆ to Sync or ParSync.

In fact, design model M may be Async and implementation model (that
matches S) may be Sync or ParSync ⇒ �late bindinglate binding� of ∆ to Sync

or ParSync. It is (obviously) possible to characterize the worst-case
temporal behavior of an asynchronous algorithm.

Note: TimeP proofs can be established only after SafeP and LiveP
have been proven (no deadlocks, eventual termination, �, in addition
to postulating wcet�s for processes).

In case of �early early bindingbinding�, you are doing the opposite: prove TimeP
first, and then use time bounds to prove SafeP and LiveP! With all the
drawbacks presented before�

WG 10.4 - Jan. 2003 Late binding 28

Why is it that TT/Sync designs seem �simpler� and/or �safer�?

�While ET systems are flexible, TT systems are temporally predictable�,
pp. 2-5, TTP/A-Protocol V2.00, Sept. 2002.

The reader is (obviously) invited to conclude that ET systems are not
temporally predictable!!! IOW, scheduling theory, queuing theory, �
are useless!!!

And we know that this cannot be right �

WG 10.4 - Jan. 2003 Late binding 29

The single-lane highway theorem
(sub-title: with TT solutions, no waiting queues)

Consider a highway with 3 lanes, reducing to 2 lanes, and then to 1 lane.

At rush hours, i.e. when highway resource allocation matters, car speed
is highest on the 1-lane portion. Therefore, highways should be 1-lane
only!

Translation: Waiting queues don�t build up within TT systems, they build
up outside TT systems (at entry points). So what? What matters to a user
is knowing a bound on sojourn times in waiting queues, no matter where
such queues happen to build up ☺
And due to lack of schedulability analyses with the TT approach, there is
no way of predicting such bounds "

WG 10.4 - Jan. 2003 Late binding 30

The essence of TT vs. ET solutions

 For any given level k, ET solutions are faster and/or more

 efficient than TT solutions

Example: a shared multi-access communication medium

� 10 message sources,

� each source generates 9 messages of duration 1 each, 1 message

of duration 10, every 10 messages,
� up to x messages submitted concurrently, 1 ≤ x ≤ 10

WG 10.4 - Jan. 2003 Late binding 31

TTP multi-access scheme = conventional Static_Sync_TDMA

⇒ a pre-computed cyclic frame of 10 consecutive time slots,
each of duration 10

w = protocol overhead per frame + 10 inter-slot �guard times�

Performance figures:

T = worst-case waiting time(message) = 100 + w

Efficiency ratio (w ignored) = 0.19
1 2

10

10 1

WG 10.4 - Jan. 2003 Late binding 32

Deterministic Ethernets = conventional Async_TDMA

⇒ CSMA + deterministic contention resolution

w = protocol overhead per 10 messages

Performance figures:

T = worst-case waiting time(message) = 10 + 9x + w

Efficiency ratio (w ignored) = 1
 1 2 3 4 5 6 10

 1 10 (x=3)

WG 10.4 - Jan. 2003 Late binding 33

This simple example is an illustration of well-known results in

computer networking.

For problems in distributed computing, similar conclusions hold.

Reason? TT/Sync performance figures are max{max} functions,

whereas ET/Async performance figures are min{max} functions.

WG 10.4 - Jan. 2003 Conclusions 34

 4. Conclusions 4. Conclusions

Asynchronous semantics are very much appropriate for capturing

and solving real-world problems, including real-time problems, as

well as for achieving the highest confidence figures.

Very conservative users have seen the pitfalls of ParSync/Sync

approaches. Some � e.g., French and European Space Agencies � even

spend money on Async approaches.

FastUCS and FastUCN Async algorithms ([Hermant/Le Lann 2002])

are under development by a software company, soon to be delivered to

ASTRIUM as M/W components for new spaceborne applications.

Demonstrator installed at ESA/ESTEC premises in June 2003.

Components to be made available to European industry by ESA/ESTEC.

