
Dependability and Adaptivity
in Cactus, Self!, and iMobile:

Challenges and Solutions

Matti Hiltunen

AT&T Labs-Research
180 Park Avenue
Florham Park, NJ

hiltunen@research.att.com

2

"Cactus: Event-based framework for
configurable and adaptive distributed
services and protocols

"Self!: Data-flow based component
framework for pervasive dependability

"iMobile: Mobile enterprise services
platform
� New name: AMN (AT&T Mobile Network)

3

Acknowledgements
" Cactus: Joint work with Rick Schlichting (AT&T

Labs), Nina Bhatti (currently at HP Labs), Patrick
Bridges (current at the Univ. of New Mexico) and
other former and current graduate students at
the Univ. of Arizona

" Self!: Work by Karin Högtedt and Christof
Fetzer at AT&T Labs

" iMobile: Joint work with Robin Chen, Rittwik Jana,
etc. at AT&T Labs

4

Outline
Definitions
Example systems: Cactus, iMobile, Self!
Issues in

� Dependability
� Adaptivity

Dependability and adaptivity in Cactus,
iMobile, Self!

Conclusions

5

Definitions
Middleware:
� If it is not an application and it is not part of the

operating system, it must be middleware

� Software layers/components that provide higher

level abstractions for application designers

� Middleware must typically provide support for

more than one application (i.e., generality)

6

Customizable middleware can be tailored to provide

different service properties/attributes to

different applications.

Adaptive middleware can change its behavior at

runtime as a reaction to changes in the execution

environment or application requirements.

Dependable middleware is

� itself dependable

� increases the dependability of the applications

that use the middleware

7

Outline
Definitions
Example systems: Cactus, iMobile, Self!
Issues in

� Dependability
� Adaptivity

Dependability and adaptivity in Cactus,
iMobile, Self!

Conclusions

8

CACTUS

SERVICE X

SERVICE Y
Reliability

Availability

Timeliness

Security

Consistency

Performance

CHANGED USER
REQUIREMENTS INTRUSIONS

FAILURES
CHANGES IN
AVAILABLE
RESOURCES

CPUMemory

APPLICATION

OS & NETWORK
Network
Bandwidth

Cactus Vision

9

Cactus Approach

Cactus goals:
� Configurable services with highly-customizable functionality

and properties.
� Dynamically adaptive services that can change their behavior

and properties at runtime.

Customizable API
C

o
m

p
o

si
te

 p
ro

to
co

l
EventsMicro-protocols

Reliability

Prioritization

Integrity

accReq

recRep

delRep

usrReq
S

h
ar

ed
 d

at
a

Service = a composite protocol consisting of micro-protocols,
each of which implements a function or property.

Configuration = choose
micro-protocols.

Adaptation = activate/
deactivate micro-protocols
at runtime.

10

Micro-protocol execution:

Micro-protocol = collection of event handlers.
Handlers bound to events in the composite protocol.

� Binding dynamic, can be changed at runtime.
� Order can be specified (often important).

Events provide a level of indirection between micro-protocols.
Allow new micro-protocols to be loaded and activated at

runtime.

newServerRequest

readyToInvoke

invokeReturn

requestReturned

assignOrder

checkOrder

checkNext

TotalOrder mp

decryptRequest

encryptReply

DESPrivacy mp

11

Cactus Prototypes and Services
Prototypes:

� Cactus/C on Linux, Cactus/C++ on Linux and
Solaris, and Cactus/Java.

Example configurable services:
� Fault-tolerance services: group RPC,

membership, system monitoring.
� Real-time services: RTD channels

(communication).
� Secure communication services: SecComm.
� Services that address multiple QoS

attributes: CQoS
Services range from transport protocols to

middleware and application services.

12

AOL Instant Messenger

WAP
phone

Microsoft
Exchange Server

 Directory Service

PDA/Email
Devices

iMobile: Mobile Enterprise Services

?

What is missing?

firewall

Image and Video
Database

Voice mail

Devices Info Space

13

iMobile: Logical Architectural View

AT&T �What�s
New� Service

Corporate DB:
Post Directory

Service

Devlet: device
driver

Infolet: interface
to an info space

Engine

User/device
profiles

AOL Instant Messenger

WAP phone

Applets

PDA/Email
Devices

iMobile

Applet: complex
application logic

Enterprise
Database

14

iMobile Access to Critical
Enterprise Applications

� Authorized users can access:
� Messaging services
� Corporate directories and databases
� Exchange Services: calendar, contacts,

inbox, etc.
� Images/Engineering Drawings
� Instructional Videos
� Voice Mail
� �

15

iMobile Enterprise Edition

MD

HTTP
Gateway

AAA
Services

Reliable
Message
Queue

iMobile
Server

iMobile
Server

iMobile
Server

Exchange
Server

Location
Server

Post DB
Server

Service
Profile DB

�

Mobile
Device

HTTP
Gateway

AIM
Gateway

Email
Gateway

��

AAA: Authentication,
Authorization, and Accounting

iMobile
Server

Gateways
Servers

infolet

VCR
Server

Java Message Service
(JMS)

Telnet
Gateway

16

 Standards Compliant and Carrier Agnostic

� Standard Enterprise Software

� Message Oriented Middleware: JMS

� Corporate Database: JDBC

� Corporate Directory: LDAP, JNDI

� Microsoft Exchange Server: WebDAV

� Enterprise VPN Products: IPSec

� Content Transcoding: XML, XSLT

� Messaging Services: SMTP, IMAP, POP3

17

Self!
 Motivation: Home Networks

network

dsl/cable modem

Maybe up to 10 hosts
Ethernet

Fetzer, Hogstedt, AT&T Labs Research

18

Future: More Nodes & Services

network

Maybe up to 1000 hosts

sensor actuatorservice
Fetzer, Hogstedt, AT&T Labs Research

19

Pervasive Dependability

� Pervasive systems are society critical

� System management has to be cheap
� customers might pay low monthly fee

� each customer service call costs money

� Automatic (=cheap) system management
is needed to make pervasive systems a
reality

Fetzer, Hogstedt, AT&T Labs Research

20

Research issues

� self-management
� self-diagnosis,
� self-customization,
� self-configuration,
� self-reconfiguration,
� self-*

"Approach: Developing Self !, a dataflow-
oriented framework to use as test-bed

Fetzer, Hogstedt, AT&T Labs Research

21

Components & Pins

"Components have any number of pins

"Pins can only be connected pair-wise

"Pins are unidirectional (input or output)

"Pins are untyped (i.e., accept any object)

"All communication via pins

Component
input pin output pin

Fetzer, Hogstedt, AT&T Labs Research

22

Master and Slave Pins

Connection � 2 pins together

1 Master pin provides control (caller)

1 Slave pin is controlled (callee)

Both blocking and non-blocking functionality

Standard adapter components used to fix pin mismatches

Master Slave Master Slave

Pin

Input Output

Master
Output Pin

Slave
Input Pin

Push

Master
 Input Pin

Slave
Output Pin

Pull

space available data available

Fetzer, Hogstedt, AT&T Labs Research

23

Self! Toolkit

"Self! Library
"Standard Components

"Standard Pins

"User defined
"Components

"Pins

"Generators
"xml2C

Fetzer, Hogstedt, AT&T Labs Research

24

Example Application

switch S

temperature sensor

if (Temperature > Threshold)

switch off S

power line

Within 1sec, 99.999%

Fetzer, Hogstedt, AT&T Labs Research

25

c
outin

in

Dataflow-Oriented
Applications

filter

out

in

switch

in

Fetzer, Hogstedt, AT&T Labs Research

temperature
sensor

temperature
sensor

26

Outline
Definitions
Example systems: Cactus, iMobile, Self!
Issues in

� Dependability
� Adaptivity

Dependability and adaptivity in Cactus,
iMobile, Self!

Conclusions

27

Issues in Dependability

Middleware CAN increase the dependability of

applications (e.g., Isis, FRIENDS, Eternal,

QuO/AQuA,�).

� but �

it MAY also decrease the dependability of

applications.

28

Middleware introduces additional software

components - and hardware components, e.g., key

distribution server or replication manager - that

may fail/ become security vulnerability/etc.

Solutions: no magic bullet

� Use of dependability mechanisms: replication,

encryption, failure detection, etc.

� Measurement and analysis to determine the

necessary level of redundancy etc.

29

Issues in Adaptivity
Adaptivity can improve the dependability of the

middleware as well as the applications using it.

Adaptation mechanisms:

� Value adaptation: change execution parameters

� Algorithmic adaptation: change algorithms used

� Resource reallocation: reassign resources based

on new operating conditions

Types of adaptation:

� Property preserving

� Property changing (e.g., graceful degradation)

30

Challenges:

� Policies (when and how)

� Coordination between different adaptive

components on a host (i.e., on the different

levels) � inter-component coordination

� Optimization

� Coordination between different hosts � inter-

host coordination

� Stability

� Overhead of the adaptation mechanisms

31

Outline
Definitions
Example systems: Cactus, iMobile, Self!
Issues in

� Dependability
� Adaptivity

Dependability and adaptivity in Self!,
iMobile, and Cactus

Conclusions

32

Dependability and adaptivity in Self!

Dependability mechanisms such as retransmission,

redundant transmission along separate paths can

be implemented as reusable components

Components themselves - or additional monitoring

components - can detect failures and reconfigure

the component graph

Component �wrappers� check the component failures

33

Data Collection

Fetzer, Hogstedt, AT&T Labs Research

filter

out

in

switch

in

temperature
sensor

temperature
sensor

c
out

in

in

monitor

monitor

splitter

splitter

device1

device0 device2

device3

34

Fetzer, Hogstedt, AT&T Labs Research

Distributed Data Processing

monitor

monitordevice1

device0

device3

processing splitter

processing

repair agent
splitter

device2

repair agent

35

Self Re-/Configuration Problem

source
out

sink
in

Fetzer, Hogstedt, AT&T Labs Research

device1 device2 device4

device3

filter

filter

object

36

Omission Failure Problem

source
out

sink
in

retry
west

outin retry
east

outinfilter outin

Fetzer, Hogstedt, AT&T Labs Research

device1

filter

device2 device4

device3

object

37

Dependability in iMobile

Challenge: LOTS of system components:

� gateways, iMobile server, email servers,

databases, JMS servers, authentication servers,

� external servers/services accessed by infolets

� wireless connectivity providers (cell phone,

paging network, WiFi, etc)

38

Solutions:

� iMobile servers and gateways redundant

� Need to add �level 4 redirectors�

� Databases and JMS servers COTS components

with industry standard interfaces

⇒ rely on fault-tolerant versions from industry

(e.g., Oracle database clusters, IBM MQ)

� Component monitoring and automatic restart

� Retransmission of requests.

39

Solutions (cont.):

� Performance measurement and failure detection
(syslog-based running, SNMP planned)

� Multiple access devices/protocols provide
redundancy in case one or more wireless access
networks is down (SMS vs. Blackberry)

Planned:
� Backup infolets
� Transactional execution semantics
� Use of Java 2 EE facilities
� Cactus in iMobile
� �

40

Adaptivity in iMobile
Some failure recovery �adaptations� in place.

Planned:

� Dynamic resource allocation based on

load/failures

� Algorithmic and value adaptations to deal with

high system load and/or component failures

(service differentiation, traffic shaping,

filtering, etc.)

� Predictive adaptation based on system modeling

41

Dependability in Cactus
The Cactus framework can be used to implement any

dependability mechanisms in a configurable

manner.

Example: CQoS.

� a configurable portable QoS architecture for

distributed object computing.

42

CQoS Motivation

Distributed object platforms lack unified support for
QoS (fault tolerance, security, and timeliness)

Key observation:

� The fundamental techniques for implementing
these QoS attributes are often similar
regardless of the specific middleware platform.

Goals:
1. Support highly configurable multi-dimensional

QoS with support for fault tolerance, security,
service differentiation, and any combination.

2. Platform independent and easily portable to
new platforms.

43

Software Architecture

Client and server applications and the middleware platform
unmodified.

Middleware

Client Application

CQoS

Server Application

CQoS CQoS
Service

CQoS
Interceptor

CQoS

CQoS consists of two components:
� Application and platform-specific CQoS interceptor

generated from IDL.
� Generic CQoS service component implements QoS.

Separates QoS implementation from specifics of the
platform.

44

Realizing QoS Enhancements

Micro-protocols can be used to implement any
function or property

Micro-protocols include:
� Fault tolerance: ActiveRep, PassiveRep, TotalOrder,

MajorityVote, � .

� Security: DESPrivacy, �

� Timeliness: PrioritySched, QueueSched, TimedSched.

Different combinations of micro-protocols
provide semantically different custom
variations of CQoS.

45

Implementation

A prototype of CQoS has been completed using
Cactus/J.

CQoS Interceptors have been implemented for
CORBA and Java RMI.

� CORBA: Replace standard stub and skeleton.

� Java RMI: Replace stub, introduce proxy
server.

� The generation of CQoS Interceptors has been
automated (so far for CORBA).

The CQoS Service components are independent of
CORBA/Java RMI - operate on both.

Similar architecture planned for iMobile.

46

Adaptivity in Cactus
Event mechanism makes it easy to activate and

deactivate micro-protocols at runtime.

Ability to adapt is not enough:
� Adaptation policy
� Inter-component and inter-host coordination

Solution: Cholla coordination architecture
� Composable adaptation logic for composable

software

47

Network
Device

IP

Transport
Protocol

Video
Sender

Network
Device

IP

Transport
Protocol

Video
Display

Network
Congestion

CPU
Availability

Power
Availability

Patrick Bridges, Univ. of Arizona

48

Network
Device

IP

Transport
Protocol

Video
Sender

Network
Congestion

CPU
Availability

A
daptation

C
ontroller

Network
Device

IP

Transport
Protocol

Video
Display

Power
Availability

A
daptation

C
ontroller

Patrick Bridges, Univ. of Arizona

49

Adaptation Controllers
Goal:

Compose and coordinate multiple adaptive
components using composable controllers:
"Adaptive components controlled by adaptation

policies
"Want to compose and coordinate fine-grained

policies into a controller.
"Choose appropriate policies based upon:

"User preferences (e.g. change framerate
or picture quality)

"Application demands (e.g. bandwidth or jitter sensitivity)
"System requirements (e.g. wireless vs. wired network)

Patrick Bridges, Univ. of Arizona

50

Expressing adaptation policies:
"Rule-based approach to constructing

controllers
"A set of rules defines a particular behavior
"Sets of rules are composed into a controller

that describe the policy

Coordination:
"Express explicit coordination policies as

separate rulesets that govern the
interactions between other policies

"Allow implicit coordination by exposing
state of one component to other
components

Patrick Bridges, Univ. of Arizona

51

A
da

pt
at

io
n

C
on

tr
ol

le
r

Multimedia CODEC

IP

C
T

P

encoding
parameters

Positive ACK

WindowedFlowControl

ForwardErrorCorr

RoundTripTimeEst

cong. window

num. drops,
num. timeouts

N, K

round-trip time

. . .

Queuequeue length

C
hollaC

ontrol

Patrick Bridges, Univ. of Arizona

52

CTP

Proxy

Network Proxy Example

Sender

CTP

C
T

P C
ong.

C
ontrol

A
daptation

C
ontroller

C
T

P Flow
C

ontrol

Proxy Content
Recoding

Display

CTP

Patrick Bridges, Univ. of Arizona

53

Inter-host coordination
Issues:

� Agreement on global state and need to adapt

� Synchronization of adaptation steps without

violating the service properties

Work in progress:

� Libraries of reusable adaptation protocols that

preserve different sets of service properties.

� GAP: Graceful Adaptation Protocol (ICDCS 01)

54

Conclusions
Dependability:

� Middleware must be designed carefully if it is
to increase the application dependability

Adaptivity:
� Mechanisms are often relatively easy
� Policy and coordination issues often difficult
� Adaptation coordination architecture

55

For more information
iMobile: http://www.research.att.com/sw/tools/amn/

� Y.-F. Chen, H. Huang, R. Jana, T. Jim, M. Hiltunen, R.
Muthumanickam, S. John, S. Jora, and B. Wei, �iMobile EE � An
Enterprise Mobile Services Platform�. To appear in ACM Journal
on Wireless Networks, 2003.

Self*:
� K. Fetzer and K. Hogstedt, �Self*: A Data-Flow Oriented

Component Framework for Pervasive Dependability�, To appear
in WORDS 2003, January 2003.

Cactus: http://www.cs.arizona.edu/cactus/
CQoS:

� J. He, M. Hiltunen, M. Rajagopalan, and R. Schlichting, �Providing
QoS Customization in Distributed Object Systems�, Middleware
2001, pages 351-372, November 2001.

� Extended version to appear in SPE, 2003.
Cholla:

� P. Bridges, �Composing and Coordinating Adaptations in Cholla�,
PhD Dissertation, University of Arizona, Department of
Computer Science, Tucson, AZ, Dec 2002.

